Experience in Upper and Middle Sales Funnel Optimization Using Lift Modeling and Embeddings

Wai Gen Yee May 1, 2021

About...

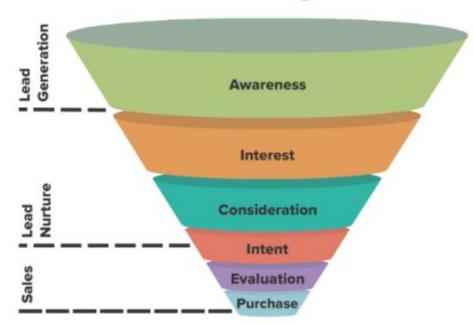
- Links together restaurants, diners, and drivers
- Want to be the marketer go-to for restaurants
- 140,000+ restaurants in over 2,700 cities
- >20MM active diners
- >\$5B annual food sales
- Other brands: Seamless, LevelUp, Tapingo,
- AllMenus and MenuPages

About...

Tripadvisor

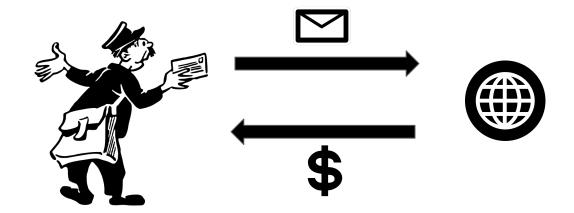
The Marketing Funnel

Track Maven

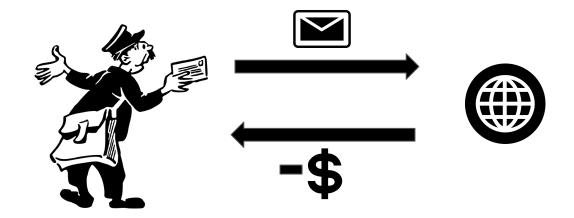


- Marketing campaigns and consumer research
- Events, advertising, tradeshows, blog, webinars, direct mail, viral campaigns, social media, search, media mentions, and more
- Engagement and introduction to positioning
- Emails, targeted content, classes, newsletters, and more
- Product information and specials
- Automated email campaigns, case studies, free trials, and more
- Product demos and shopping carts
- Sales adds to nurture stream
- Marketing and sales work to prove their product is best
- Sales transaction is completed

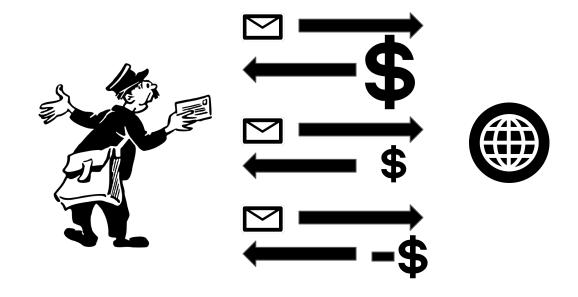
Assumption: Make Money, Scale



Assumption: Lose Money, Don't Scale



Assumption: Make Money, Scale



What Really Happens... And What We Should Do

Approach

- Test on a simple brand email campaign
- Use training data from a prior email
- Predict revenue for each email / customer segment pair

Get Prabal Gurung's joyful style D Inbox x

Etsy <email@email.etsy.com> Unsubscribe to me -

12:33 PM (11 hours ago)

Etsy Home Hub PRABAL GURUNG CDEATOD COLLAD Dish of the Month: Grilled Cheese D Inbox x Grubhub <email@a.grubhub.com> Unsubscribe to me * GRUBHUB

Approach

Training data:

- Training data is from a prior randomized experiment
 - 10% random holdout
- Predictors: features about the customer
 - o Purchase behavior, email interaction, time on platform...
- Target: revenue generated 7 days after the email was sent

- One predictive function per email variant, including holdout
- Send variant v to customer c where f(v, c) = revenue is maximized

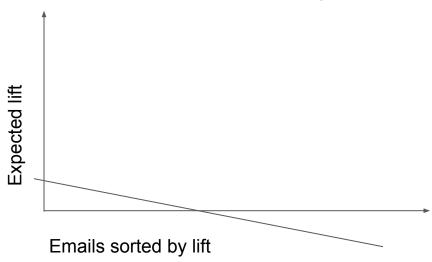
- FAIL!
- Offline analysis

		recommendation	
		don't send	send
	don't send	DD	DS
actual	send	SD	SS

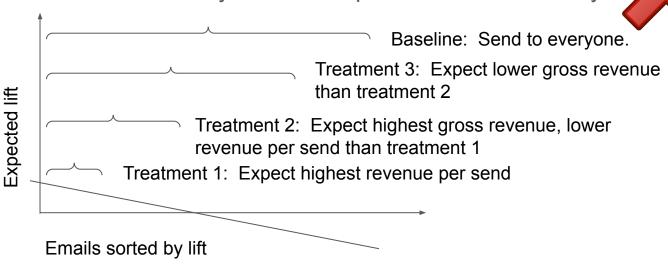
- Expect that customers whose treatment in the training data matched model recommendations to make more revenue
 - Revenue(DD) >? Revenue(DS)
 - Revenue(SS) >? Revenue(SD)
 - Differences were very noisy with small magnitude

- Offline analysis
 - Interaction term significance
 - revenue(treatment, customerFeature) =
 - w0 + w1*treatment + w2*customer + w3*(treatment*customerFeature)
 - Expect w3 to be significant

Online test: Want to see monotonicity / sensical directionality in results...



Online test: No monotonicity in revenue per send / directionality in o



What To Do?

- Work with more complex algorithms
- Get better data

Use A Coupon Email Campaign

- More than 50% greater engagement rates than other types of emails
- Varied dollar off and minimum purchase amount

Treatment	Order Lift	Revenue Lift
\$3 OFF \$15	0.71%	1.63%
3 OFF 10	1.43%	-1.37%
5 OFF 15	3.13%	1.49%
5 OFF 10	4.52%	-7.67%
7 OFF 15	4.74%	-3.30%
7 OFF 10	7.72%	-13.52%
10 OFF 15	5.08%	-8.97%

Maximize revenue subject to not losing order volume

*Numbers are obfuscated but directionally consistent

Targeted Treatment - Heterogeneous Treatments

Order Lift								
Bucket	\$3 OFF \$15	3 OFF 10	5 OFF 15	5 OFF 10	7 OFF 15	7 OFF 10	10 OFF 15	holdout
D customers	1.69%	2.33%	2.34%	7.64%	6.10%	9.34%	9.03%	0.00%
C customers	1.52%	2.41%	3.43%	4.49%	4.29%	6.81%	2.84%	0.00%
B customers	-0.52%	0.40%	1.00%	1.05%	1.90%	3.96%	-0.61%	0.00%
A customers	-1.83%	-2.75%	4.49%	0.27%	4.37%	3.99%	2.05%	0.00%

Revenue Lift								
Bucket	3 OFF 15	3 OFF 10	5 OFF 15	5 OFF 10	7 OFF 15	7 OFF 10	10 OFF15	holdout
D customers	<u>1.84%</u>	-2.06%	1.76%	-9.75%	-5.96%	-21.37%	-17.75%	0.00%
C customers	<u>1.60%</u>	1.93%	1.18%	-11.23%	-4.13%	-19.10%	-12.37%	0.00%
B customers	0.92%	-4.03%	<u>0.41%</u>	-7.81%	-4.25%	-16.86%	-10.85%	0.00%
A customers	0.34%	-3.07%	-0.03%	-5.73%	-0.99%	-6.53%	-1.22%	<u>0.00%</u>

Tradeoff

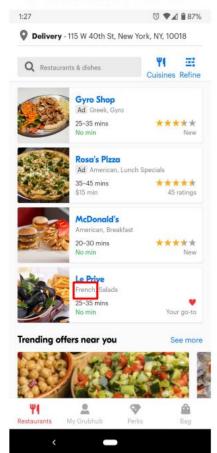
Lift vs. Holdout	Orders	Revenue
5off30	0.44%	1.07%
Targeted	1.15%	0.83%

Findings with Lift Modeling and Heterogeneous Treatment

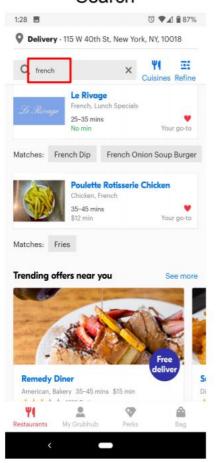
- Need data with sufficient signal
- Treatment effects can vary across populations
- Allows finer tuning of treatments depending on business goals

Not covered: where this work fits into a bigger targeting framework

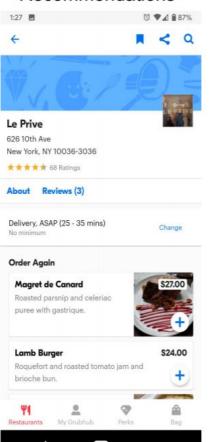
Restaurant Recommendations



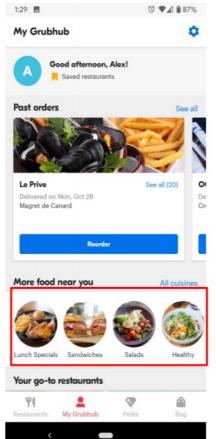
Rest/Dish/Cuisine Search



Menu/Dish Recommendations

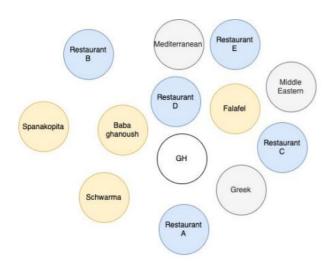


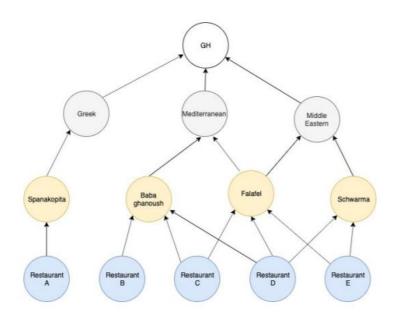
Cuisine Recommendations



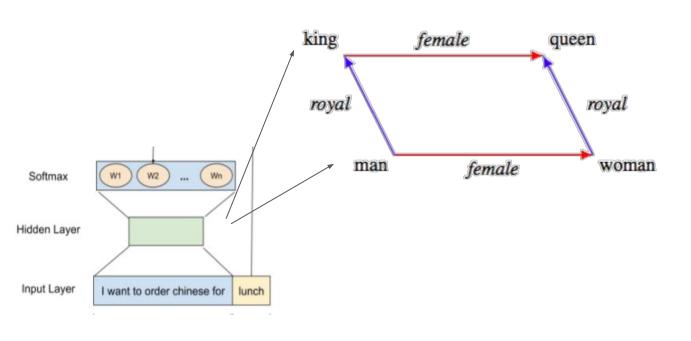
Ecommerce Dilemma

- Our catalog grows everyday
- Data is unstructured
- and unbounded
- How can we understand it to drive: search & recommendations?





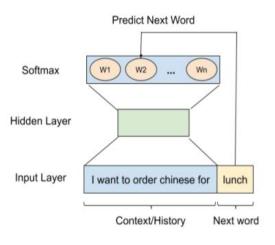
Embedding Primer

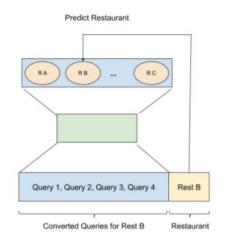


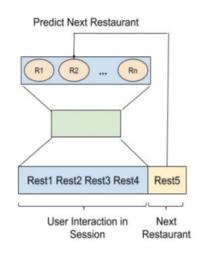
Representation Learning

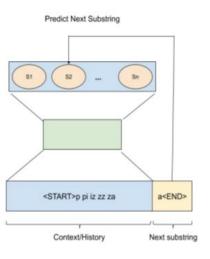
- Query2vec: understanding users
- 2. Rest2vec: understanding restaurants
- 3. FastMenu: understanding menus

Users + Restaurants + Menus = Grubhub Food Universe









Search Pipeline

Query Understanding	Query Building	Candidate Selection	Ranking	Enrichment
Language NormalizationIntent Classification	FilteringQuery Expansion	Phrase/Term MatchingSemantic Matching	RevenueRelevancePersonalization	PruningHydrationPagination

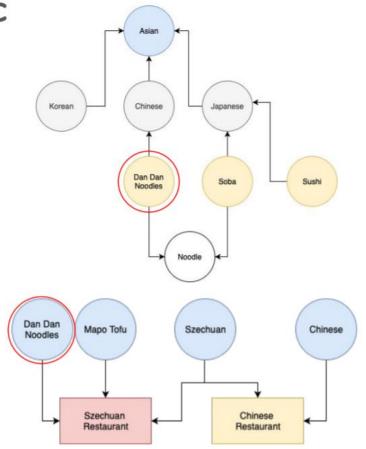
Query Expansion w/ query2vec

Classical Query Expansion

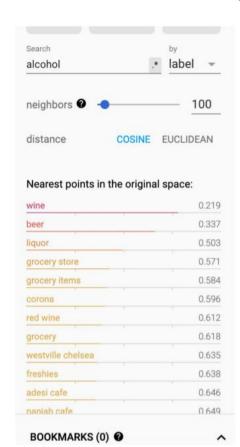
- Thesaurus/Synonyms:
 - Not Robust
 - "Dan Dan Noodles" -> cranium, brain, noggin, thinker
- Knowledge Graph
 - Difficult to build and maintain

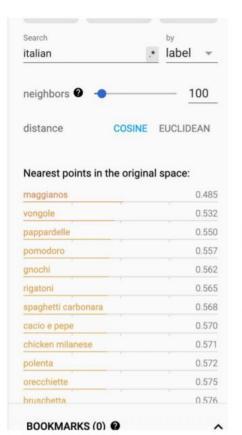
Modern Query Expansion

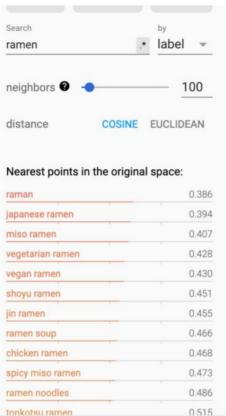
- Representation Learning
 - Click Pattern Mining: Cluster similar queries based on converting restaurant
 - query2vec à la word2vec builds a virtual product knowledge graph

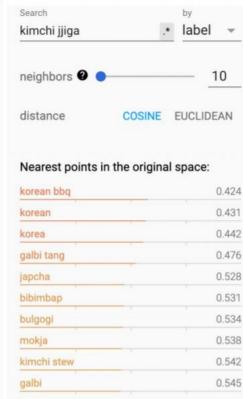


Nearest Neighbors

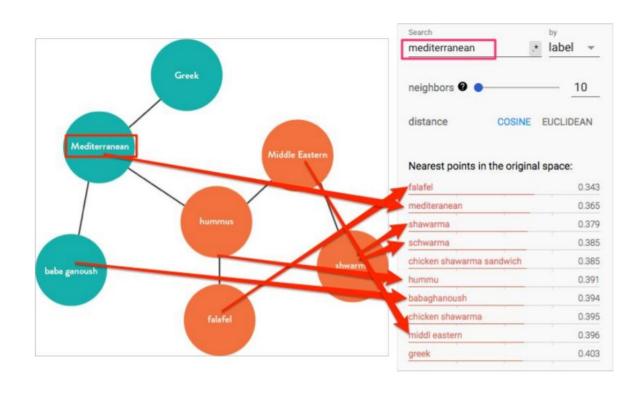








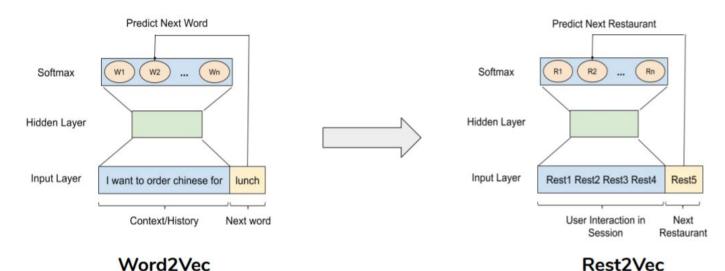
Query2vec Latent Product Knowledge Graph

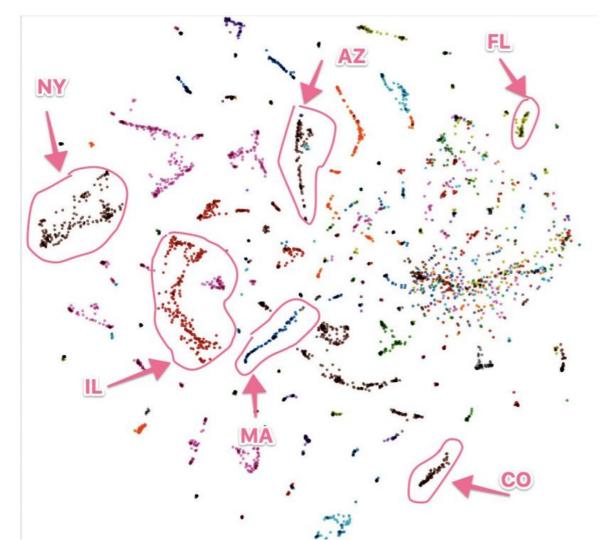


Rest2Vec

Creates numerical vector representation of restaurants from historical clickstream data using user's clicks/conversions

- Helps to understand Restaurants
- Helps to power Discovery
- Helps to power Personalization





Tensorboard Visualization

- Each Market has its own Cluster
- Cluster size indicates how big the Market is

Nearest Neighbors

Nearest points in the original space:

Famiglia Pizzeria (8th Ave)_New York_1	0.028
Rosa's Pizza_New York_10119_102882	0.038
High Line Pizzeria_New York_10001_27	0.042
Little Italy Pizza_New York_10001_1013	0.047
Little Italy Pizza_New York_10001_2681	0.052
Famous Amadeus Pizza_New York_100	0.059
Don Dani Dizza New York 10001 707164	0.060

Menu Text Matching

Menu Item Description:

mai fun

blueberry pancake

String Matched Menu Items:

mai fun, chow fun, shrimp mai fun

blueberry smoothie, buttermilk pancake

Semantic Matched Menu Items

stir fried noodles, thin rice noodles

grand slam breakfast

Increased recall

FastMenu

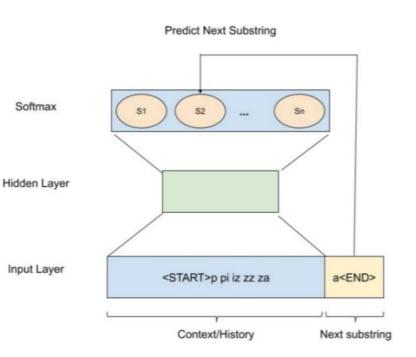
Creates numerical vector representation of **menu items** using associated textual data rather than diner behavior

- Helps to understand menus
- Helps to power semantic search
- Complete catalogue coverage

Static Sequence Embeddings

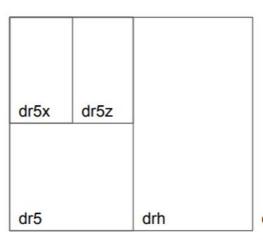
Fasttext = sub-words

- Handles out of vocabulary words
- "pizza"
- <START>p, pi, iz, zz, za, a<END>



Geohashes

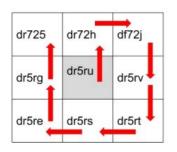
- Covers the surface of the earth
- Denotes rectangular area
- Alphanumeric string
- ~32 bit lat-long specification
- Nested precision levels

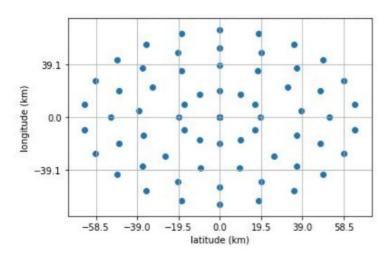


dr

Geohash Embedding

Geohashes: same representative characters as language





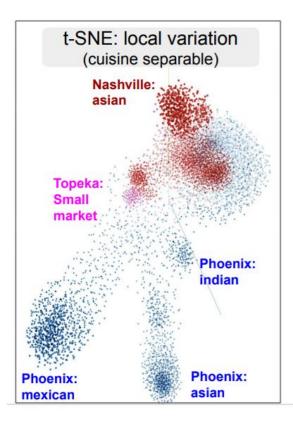
language	geohash
Word "pizza"	Geohash location "dr5ru"
Sentence	Traversal pattern
"margarita pizza adorned simply with basil mozzarella tomato sauce pizza subs italian american lunch specials"	"dr725 dr72h dr72j dr5rg dr5ru dr5rv dr5re dr5rs dr5rt"

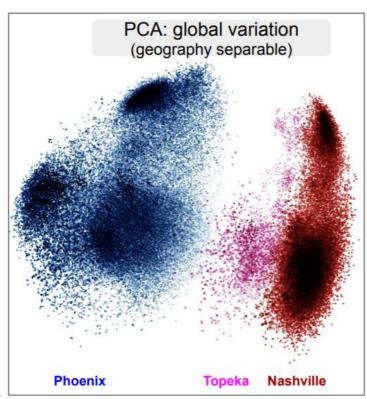
Concat geohash sentence to menu text

"margarita pizza adorned simply with basil mozzarella tomato sauce pizza subs italian american lunch specials dr725 dr72h dr72j dr5rg dr5ru dr5rv dr5re dr5rs dr5rt"

- Expand "word" vocabulary, but still 26 chars and 10 numbers
- Menu item text now knows about location

Visualization: TensorBoard





- Topeka -> Nashville: 600 mi
- Topeka -> Phoenix: 1k m
- Topeka = few restaurants

Global trends

- Menu items separable by geography
- geography is strongest feature
- Embedding distance ~ physical distance
 - Topeka cluster closer to Nashville than Phoenix

Local trends

- Geohash strongest feature
- Cuisine features highly unique
- Small market size obscures separability

Now we preserve the semantic comparison but don't recommend pizzas Phoenix to a diner in Nashville -> decreases latency at run time

Nearest Neighbors

1096076,57175260,2 Buttermilk
Biscuits,Topeka KS

label 1096076,57175260,2 Buttermilk
Biscuits,Topeka KS

Nearest points in the original space:

1095970,57175400,2 Buttermilk Biscuit	0.005
1076808,41975502,Biscuits and Gravy,T	0.018
1076808,41975510,Trainwreck,Topeka	0.026
1096076,57175264,Hash Browns,Topek	0.030
1096076,57175309,Hash Browns,Topek	0.030
1095970,57175384,Blueberry Pancake	0.031
1095970,57175396,1 Hearty Breakfast	0.033
1076808,41975503,Breakfast Biscuit,To	0.034
1076808,41975514,Breakfast Bowl,Top	0.034
1096076,57175256,1 Hearty Breakfast	0.035
1095970,57175449,Hash Browns,Topek	0.035
1095970,57175404,Hash Browns,Topek	0.035
1096076,57175244,Blueberry Pancake	0.035
1095970,57175373,Lumberjack SlamÂ	0.035

Thin Rice I	Noodle Tray	^
cust_id	302844	
menu_item	_id 46097558	
name	Thin Rice Noodle Tray	
location	Nashville TN	
Nearest po	ints in the original space	:
Flat Rice No	odle Tray	0.002
Vegetarian F	ried Noodles Lunch Special	0.007
House Speci	al Mei Fun	0.007
Vegetable M	ai Fen	0.008
40. House M	ai Fen	0.008
54. Vegetable	e Mai Fun	0.008
Pork Mei Fur	1	0.008
Shrimp Mei F	Fun	0.009
58. House Sp	pecial Mei Fun	0.009
53. Vegetable	e Mei Fun	0.009
58. House Sp	pecial Mai Fun	0.009
55. Chicken I	Mai Fun	0.009
53. Vegetable	e Mai Fun	0.009
Lo Mein Noo	dle Tray	0.009
59. House Sp	pecial Mai Fun	0.009
Combination	Pan Fried Noodle	0.010

Nearest Neighbors

921564,55189279,Grande Nachos

Box - Seasoned Beef, Nashville TN

label 921564,55189279,Grande Nachos Box - Seasoned Beef,Nashville TN

distance

Cananh

COSINE EUCLIDEAN

Nearest points in the original space:

923311,55181646,Grande Nachos Box - ... 0.000
923311,55181642,Grande Nachos Box - ... 0.000
922837,55185452,Grande Nachos Box - ... 0.000
922837,55185454,Grande Nachos Box - ... 0.000
922837,55185456,Grande Nachos Box - ... 0.000
921216,55189327,Grande Nachos Box - ... 0.000
921216,55189325,Grande Nachos Box - ... 0.000

921216,55189323,Grande Nachos Box - ... 0.000 921568,55191370,Grande Nachos Box - ... 0.000

921568,55191372,Grande Nachos Box - ... 0.000

921568,55191374,Grande Nachos Box - ... 0.000 922249,55185666,Grande Nachos Box - ... 0.000 37. Beef

cust_id 289964 menu_item_id 12216021

name location

Nashville TN

^

0.007

Nearest points in the original space:

37. Beef

56. Beef Pad Thai	0.007
46b. Pad Thai Beef	0.007
32. Chicken Chop Suey	0.007
49. Roast Pork with Black Bean Sauce	0.007
31. House Special Fried Rice	0.007
45. Sweet and Sour Pork	0.007
Beef Fried Rice	0.007
103. Hunan Beef	0.007
104. Szechuan Beef	0.007
101. Quart of Shredded Beef with Scalli	0.007
32. Chicken Chow Mein	0.007
34. House Fried Rice	0.007
72. Sweet and Sour Chicken	0.007

17. Kung Pao Beef Dinner

Conclusions and Future Work

But lots more to go to tune models to optimize relevance and lifetime values

Thanks

Contact info: waigen at ieee

Thanks, too, to Alex, Emily, Parin, Sahil, Weiwen, Yong, Renata

References

- Changji Shi and Adriel Fuad, Air Traffic Controller: Member-First Notifications at LinkedIn, 2018-03-01
- Mark White, EXPLICITLY OPTIMIZING ON CAUSAL EFFECTS VIA THE CAUSAL RANDOM FOREST: A PRACTICAL INTRODUCTION AND TUTORIAL, 2018-10-14
- Eva Ascarza, Retention Futility: Targeting High-Risk Customers Might be Ineffective, Journal of Marketing Research, 2018-02-01
- Skyward, How the Marketing Funnel Works From Top to Bottom, https://www.skyword.com/contentstandard/how-the-marketing-funnel-works-from-top-to-bottom/, 2020-10-02
- Sören R. Künzel, Jasjeet S. Sekhon, Peter J. Bickel, Bin Yu, Meta-learners for Estimating Heterogeneous Treatment Effects
 using Machine Learning, Proceedings of the National Academy of Sciences 116(10), June, 2017
- Alex Egg, Emily A Ray, Parin Choganwala: Discover your latent food graph with this 1 weird trick, PyData New York 2019
- T. Mikilov, W. Yih, G. Zweig, Linguistic Regularities in Continuous Space Word Representations, Proceedings of the 2013
 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
- Grbovic et. al., E-commerce in Your Inbox: Product Recommendations at Scale, KDD, 2015
- Bojanowski et. al., Enriching Word Vectors with Subword Information, ACL, 2017
- Alex Egg, Query2vec: Search query expansion with query embeddings, Grubhub Bytes Blog, 2019