
Named Entity Recognition for E-Commerce Search Queries

Bhushan Ramesh Bhange∗, Xiang Cheng†, Mitchell Bowden*,
Priyanka Goyal†, Thomas Packer†, Faizan Javed†

March 8, 2020

Abstract

Named entity recognition (NER) is a critical step in search

query understanding. In the domain of e-commerce, iden-

tifying the entities of brand and product type can help a

search engine retrieve relevant products and thus offer an

engaging shopping experience. However, NER in search is a

challenging task due to ambiguity, noise, and lack of context.

Recent research shows promising results on shared bench-

mark NER tasks using deep learning methods, but there

are still unique challenges in the industry regarding domain

knowledge, training data, and model production. This pa-

per proposes an end-to-end framework to address these chal-

lenges and deliver a deep learning model in production. This

framework firstly prepares three sets of training data to meet

different requirements. Then the three datasets are used to

iteratively train a bidirectional GRU-CRF model. Lastly,

the best model is deployed as a real-time web service for the

search engine at homedepot.com. Using this approach, the

best model lifts the F1 score from 69.5 to 93.3 on the holdout

test data. In both the A/B test and day-to-day use, we see

significant improvements in user engagement and revenue.

Keywords: named entity recognition, e-commerce,
search engine, neural networks, deep learning

1 Introduction

The search engine at homedepot.com processes billions
of search queries and generates tens of billions of dollars
in revenue every year for The Home Depot (THD). One
of the fundamental challenges in a search engine is to
understand a search query and extract entities, which
is critical to retrieve the most relevant products. This
task can be framed as named entity recognition (NER)
which is a common information retrieval task to locate,
segment, and categorize a pre-defined set of entities
from unstructured text. Since its introduction in the
early 1990s, NER has been studied extensively and is
evolving rapidly [1, 2], especially after the adoption of
deep learning and related techniques in recent years [2].

However, there is a gap between academic research

∗The Home Depot, Irving, TX
†The Home Depot, Atlanta, GA

and industrial applications of NER. Recent research
works often use the latest neural architectures [2] and
language models [3, 4, 5] to improve performance on
popular NER shared tasks and datasets [6]. The focused
outcome is often marginal improvement of F1 scores,
while the feasibility in real-world applications is not
often considered.

1.1 Recent Research in NER In recent years,
deep-learning-based NER together with embeddings has
become increasingly popular in the research community.
Collobert et al. proposed the first neural network archi-
tecture for NER [7] and later experimented pre-trained
word embeddings [8] as model features. Since then var-
ious neural architectures and word representations have
been studied [2]. The most popular approach is to use
recurrent neural networks (RNN) over word, sub-word,
and/or character embeddings [2, 9]. Long Short Term
Memory (LSTM) and its variants (e.g. Gated Recur-
rent Unit, i.e. GRU) are the most common neural
architectures for NER as well as for sequence tagging
[9, 10, 11, 12]. Recently, transformer-based language
models [13, 4] have been tested on benchmark NER
tasks and claim the state-of-art performance [14, 15].

It is exciting to see the booming research based
on deep learning methods and latest language models.
However, industrial applications still seem being left
behind due to unique challenges as described below.

1.2 Industry Applications and Challenges Ap-
plying deep learning to NER in e-commerce is a new and
active research area in the industry. Among those most
closely related to our work, three papers [16, 17, 18] ex-
plore deep learning for NER in e-commerce search, two
papers use conditional random fields (CRFs) [19, 20],
two papers [16, 18] perform an evaluation on queries in
production, and five papers [21, 22, 20, 16, 18] leverage a
large number of unlabeled queries available to commer-
cial search engines or perform weakly supervised learn-
ing.

Despite the above progress, we believe challenges re-
main in industrial applications such as noisy customer-

1 Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

intent signals; the need for a large amount of custom la-
beled training data; and real-time and memory-limited
production environments. In this work, we propose a
framework (see Section2) to address these challenges
and deliver a model in production.

1.3 NER at The Home Depot THD is a leading
home improvement retailer for consumers and profes-
sionals. This domain is rich in entity types and rela-
tionships, and customer search queries often reflect this
richness. To determine the shopping target of the cus-
tomer query, NER is a vital query understanding step.

The legacy NER system in production used pre-
defined taxonomies of brands and product types, recog-
nized using a sequential greedy search. Beginning with
brands and then product types, the longest matching
token sequence is labeled as the corresponding entity.
Common challenges include queries containing multiple
product types or multiple brands but only one shopping
target, ambiguity between product types and brands,
and new product types not in pre-defined taxonomy.
Three examples are listed in Table 1 to demonstrate
the challenges. These mislabels are often closely related
to specific brands, product types, and the context in the
query, so it is hard to fix at scale. The motivation to
develop a deep learning NER system is to let the cat-
alog and customer data determine the best tagging of
entities in the query to solve the problems of ambiguity
and intent.

The rest of this paper is organized as follows.
Section 2 describes the problem, our proposed solution
in terms of an end-to-end framework, and the neural
architecture. Section 3 covers offline experiments and
results while Section 4 covers online deployment and
measured impact to business.

2 An End-to-End Solution

We propose an end-to-end framework to solve the NER
challenge at THD. In this section, we first define the
problem, then elaborate on the framework, and describe
the model architecture in the end.

2.1 Problem Definition Given a search query as
a sequence of word tokens, the task of NER is to
identify the important entities, which is formulated as
a sequence tagging problem using the beginning-inside-
outside (BIO) tagging format. We focus on the two
most important entities for e-commerce: brand (BRD)
and product type (PRD). Therefore, two entities are
translated into five labels as shown in Table 2. The
key task is to build a machine learning model for
sequence tagging. The evaluation metric of the model

is the exact-match F1 score [6] where only the correct
prediction of the whole entity is considered as a true
positive. The baseline is the legacy NER system in
production as described in Section 1.3.

2.2 End-to-End Framework Our end-to-end
framework consists of three phases as shown in Fig. 1.
Each step or node is developed in a modular way for
the convenience of development and optimization.

Phase I: Training Data Preparation. An ideal set
of training data for deep learning should have three
characteristics: 1) large volume, 2) high quality labels,
3) high coverage of label values (i.e. all brands and
product types here). However, it is often too time-
consuming to prepare such training data. We find that
it is more realistic to prepare separate datasets to meet
these three requirements.

The starting point are two foundational datasets
in an e-commerce business: the product catalog (node
I.1 in Fig. 1) and customer behavior data (node I.2).
Product catalog data is the ground truth for the key
entities of all products sold on homedepot.com which
has more than 14K brands, 11K product types, and
3 million items. Customer behavior data stores cus-
tomers’ shopping journeys, including searches, impres-
sions, clicks, and purchases.

Firstly, a large amount of training data (I.4) is
automatically generated using a rule-based algorithm
(I.3) by matching the tokens in product catalog (I.1)
and customer behavior data (I.2). This dataset can
be noisy due to noisy customer behavior data and
imperfect matching algorithm, but it is still important
to capture the patterns in real customers’ search queries.

Secondly, to prepare a set of high quality “golden”
data (I.9), we sample a small amount of data from I.4

for manual annotation. To avoid bias or over-fitting
our model on a small number label sequence patterns,
we stratified sample the data by entity pattern. Here a
pattern is defined as a sequence of consequential entities
(BRD, PRD, O), instead of individual labels. See Table
3 for the top three patterns and examples. The reason
for sampling by patterns is that we find that our model
is sensitive to the order of entities in the training data,
which makes sense for a sequence tagging model. This
set of sampled and manually annotated golden data is
vital to build the first model in Phase II and to measure
the real model performance in each iteration.

Thirdly, a set of synthetic training data (I.6)
consisting of query-like strings is created by a rule-based
algorithm (I.5) using all the brands and products in
our product catalog (I.1). The synthetic pattern is
usually simple, such as brand-only queries and product-

2 Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Table 1: The examples where legacy NER mislabeled entities. "weed eater" is ambiguous because it could be
either a brand or a product type. The second query has two product types ("ice maker" and "fridge"), but
the longer one is labeled. Lastly, "table and chair set" is not in the existing product taxonomy.

Search query NER brand NER product type True brand True product type

weed eater light weight weed eater light weed eater

fridge no ice maker ice maker fridge

cosco table and chair set cosco table cosco table and chair set

Phase II: Iterative Model Training Phase III: Model ProductionPhase I: Training Data Preparation

Customer
Behavior

Data

Product
Catalog

Data

Auto
Generate

Raw Training
Data

Large
Noisy Raw

Training
Data

Auto
Generate
Synthethic

Data

Synthetic
Training

Data

Stratified
Sampling

Human
Annotation

Golden
Training

Data

Formulate
New Training

Data

Training Data
Preprocessing

Model Training

Model
Evaluation

Best

Final Model

Model
Prediction

Stratified
Sampling

Formulate
Additional

Training Data

Stratified
Sampling

Package of
checkpoint &

data

Deployment on
Cloud VM

Real-time web
service

User Input:
Husky toolbox

Model Service Output:
xxx
xxx
xx
xx
xx

I .1 I .2

I .3

I .5

I .4

I .6

I .7

I .8

I .9 I I .1

I I .2

I I .3

I I .4

I I .5 I I .6

I I .7 I I .8

I I I .1

I I I .2

I I I .3

I I I .4

I I I .5

I I I .6

Figure 1: An End-to-End Framework of the NER solution for the search engine at homedepot.com. The process
highlighted in orange could be generalized to other problems using any supervised machine learning models.

Table 2: The 5 labels in this NER problem.
Label Description

B-BRD beginning of a brand
I-BRD inside of a brand
B-PRD beginning of a product type
I-PRD inside of a product type
O outside

type-only queries. All the distinct brands and products
are covered so that the model can potentially recognize
them all.

The output of Phase I are three separate training
datasets to meet the three requirements of an ideal
training dataset. Their corpus statistics are shown in
Table 4.

Table 3: The examples of the top three patterns in the
large volume of training data (I.4).

BRD︷ ︸︸ ︷
milwaukee

O︷ ︸︸ ︷
cheap

PRD︷ ︸︸ ︷
drill

BRD︷︸︸︷
ge

O︷ ︸︸ ︷
7.4 cu ft

PRD︷ ︸︸ ︷
dryer

O︷︸︸︷
gas

BRD︷ ︸︸ ︷
behr

PRD︷ ︸︸ ︷
paint

O︷ ︸︸ ︷
discount

Phase II: Iterative Model Training. In Phase II, we
iteratively train the model with more training data and
aim to incrementally improve the model performance.

The first iteration starts with the golden data (I.9).
15% of the golden data is randomly held out as test data;
the rest of the data is randomly split into training (90%
of remaining data) and validation (“dev”) data (10%).
Then the training data is pre-processed to balance the

3 Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Table 4: Corpus statistics. The numbers of queries,
tokens, and entities in the three datasets in Phase I.

Dataset Large (I.4) Synthetic (I.6) Golden (I.9)

Query 2,737,399 23,710 16,915
Token 16,914,607 48,568 89,692
BRD 2,509,132 14,058 14,915
PRD 2,694,413 9,652 14,774

labels (II.2), which requires domain-specific knowledge
here. For example, we identify 50 tokens which can
be either a brand or a product, such as instant pot

and anchor. Such queries are balanced by oversampling
entities with fewer queries so that no bias is generated
due to skewed training data distribution.

Then the model is trained (II.3) until the valida-
tion set F1 score stops improving or the maximum epoch
is reached. After the training, the model is evaluated
(II.4) on the test data to see whether this iteration has
the best-performed model. If not, we stratified sam-
ple (II.5) from I.4 as done in I.7, for model inference
(II.6). If the prediction on a query matches the noisy
labels in I.4, we pass the query to the next step as can-
didates for additional training data. The motivation is
to reduce the noise in training data by looking for con-
sensus between the noisy labels produced by I.3 and
the noisy labels produced by II.6. Similarly, we sam-
ple (II.7) synthetic data (I.6) to increase the coverage
of brands and product types so that all possible values
are covered in a few iterations. In the end, we formu-
late new additional training data from II.6 and II.8

for the next iteration.
A question we had during early development was

whether this iterative self-training process would accu-
mulate errors, thereby biasing itself toward erroneous
patterns of predictions in II.6 such as a reduced set
of label sequence patterns. We reduce the chance of
the model drifting in this way by stratified sampling by
label sequence patterns in steps I.7, II.5, and II.7.
Beyond that, the final judge of this iterative process is
the F1 score on the held-out test set. Despite the chance
of the model drifting away from correct label patterns,
we see that this iterative process can indeed improve the
model performance iteration by iteration. More results
are shown in Section 3.

Phase III: Model Production. Model production is
the key to help THD search engine find more relevant
products. This phase starts with the best model selected
from Phase II. In node III.2, the neural graph, weights,
and required data (vocabulary, word embeddings, etc)
are packed for the next step. Then the model package

is deployed on a cloud virtual machine (III.3). To use
it in a real-time search engine, in node III.4, the other
necessary components are also added to be able to parse
a raw user search queries and to convert NER model
prediction into machine readable outputs, which enable
the deep learning model as a real-time web service for
our search engine. The sample input and output of this
service are shown in III.5 and III.6.

c

milwaukee

h e a p

LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM

Forward

Backward

Backward LSTM

Forward LSTM

Character
Embeddings

Concatentated
Character-to-Word
Representation

cheap drill

<pad>

LSTM

LSTM

Figure 2: The character-to-word subgraph of our deep
learning model. Both forward and backward word
representations are learned from character embeddings
using a BiLSTM layer.

milwaukee

GRU GRU GRU

GRU GRU GRUBackward GRU

Forward GRU

Word Embeddings
Concatentated with
Character-to-Word
Representations

CRF

cheap drill

F
B

F
B

F
B

CRF CRF CRF

GRU

GRU

<pad>

CRF

B-BRD O B-PRD O

Figure 3: The word-to-label-sequence subgraph of our
deep learning model. Forward (“F”) and backward
(“B”) character-based word embeddings are concate-
nated to word embeddings as input to the bidirectional
GRU (BiGRU) which in turn provides features for the
CRF.

4 Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

2.3 Model Architecture We base our model on the
bidirectional RNN-CRF, a popular, recent approach
to sequence tagging [2, 9]. Other recent work helps
us to finalize the architecture. Huang et al. first
demonstrated that BiLSTM-CRF can effectively use
both left and right context as well as the statistical
sequential dependency among token labels [10]. Lample
et al. [12] further showed that BiLSTM-CRF with
pre-trained word embeddings, character embeddings,
and dropout performed the best on CoNLL-2003 [6].
The GRU, a simplified variant of the LSTM, has also
shown state-of-the-art performance [9]. After numerous
experiments (see details in Section 3), our final neural
architecture is a BiGRU-CRF with a BiLSTM subgraph
for character-level embedding, as shown in Figures 2
and 3. This neural architecture is implemented using
Tensorflow.

3 Experiments & Results

We systematically run experiments on our framework,
model architectures, embeddings, and hyperparameters.
The evaluation metric is the model performance on the
holdout test data described in Section2.2.

3.1 Iterative Model Training The process of it-
erative model training in Phase II (Section 2.2) shows
improved model performance on the test data as shown
in Fig.4 and Table 5. As we iteratively add more train-
ing data, the coverage of brands and product types in-
creases and reaches 100% at iteration 7, which is impor-
tant for this model to potentially recognize all brands
and product types in real application. The F1 scores
also saturate after iteration 7.

1 2 3 4 5 6 7 8 9
Iteration

70

75

80

85

90

F1
 S

co
re

Best Iterative Training
Baseline: Without iterative training
Baseline: Legacy NER System

Figure 4: F1 score on the test data of our model
over each iteration (green diamonds) and two baselines
(dashed lines). The red line on bottom is for the legacy
NER system. The blue line in the middle is for one-pass
training using all the data (I.4 + I.6 + I.9 in Fig. 1).

The advantage of this iterative training process
is justified in three aspects. Firstly, the F1 score is

iteratively improved from 87.1 at iteration 1 to 93.3 at
iteration 7. Secondly, compared to simply training the
model once using all the data (Fig. 4 blue horizontal
line), this iterative process performs better in every
iteration. Lastly, compared to the most important
baseline, the legacy NER system in production, our
best model increases the F1 score from 69.5 to 93.3.
This significant improvement shows the superiority of
the model and justifies an A/B test in production. The
model at iteration 7 is selected for production because
of its best F1 score and complete coverage of all the
brands and product types.

Table 5: The F1 scores and the numbers of training
queries, unique brands, and unique product types by
iteration.

i training unq. BRD unq. PRD dev F1 test F1

1 14,378 3400 3239 89.32 88.82
2 19,911 3936 3768 95.81 91.36
3 31,510 4402 4216 96.52 91.47
4 57,379 5374 5131 97.70 91.73
5 115,564 7544 7004 98.68 92.49
6 241,629 12,082 10,305 99.19 92.83
7 484,390 14,102 11,111 99.49 93.30
8 992,823 14,102 11,111 99.66 93.12
9 2,089,573 14,102 11,111 99.81 92.79

Table 6: Four neural architectures tested on golden
data, with and without layers of character-based em-
bedding.

models char emb. dev F1 test F1

BiLSTM
No
Yes

85.77
86.99

85.05
86.23

BiLSTM-CRF
No
Yes

87.69
88.57

86.72
88.44

BiGRU
No
Yes

85.42
86.53

85.57
87.09

BiGRU-CRF
No
Yes

87.12
88.71

87.04
88.82

A major disadvantage is its computational cost.
On average, the whole process with nine iterations
takes about 20 hours on a GPU machine (NVIDIA
Tesla K80). Therefore, most of the experiments below
are tested on golden data only (iteration 1), which
is much faster. However, from the finished iterative
model trainings, we find that the model performance
at iteration 1 is a good indicator of the final model
performance, which can justify the experiments using
the golden data in the next three subsections.

5 Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

3.2 Tested Models The final neural architecture in
production is BiGRU-CRF with BiLSTM character-
based word representations, but we tested four different
architectures as shown in Table 6.

The character-based word embedding is produced
by a BiLSTM layer [12] (Fig. 2). It essentially
extracts features for each word using a character-level
model. With character-based embeddings, the F1 score
is consistently better as shown in Table 6. We believe
the reason is that it can help bridge the gap between
common query words and uncommon query words that
contain common sub-word character sequences.

We also compare BiGRU and BiLSTM, with Bi-
GRU showing comparable or better performance. We
select BiGRU because it has 25% fewer parameters and
is thus faster to train and execute.

The CRF layer helps to predict the most likely
sequence and to forbid invalid sequence transitions, such
as B-BRD→I-PRD and O→I-BRD. The results in Table 6
also show that it consistently improves the F1 score.

3.3 Word Embeddings We test pre-trained
Word2vec embedding [23], pre-trained GloVe [3],
custom Word2vec, and custom GloVe embedding. The
custom embeddings are trained using the top 50 million
search queries and product titles on homedepot.com.

The custom Word2vec embedding is selected for
three reasons as shown in Table 7. Firstly, domain-
specific embeddings are a better semantic representation
in terms of similar words. For example, our custom
embeddings correctly associate "milwaukee" with other
brands while off-the-shelf embeddings associate it with
cities. Secondly, the vocabulary coverage is much
higher (99.9% vs. 16% to 40%). Lastly, the model
performance is also better or comparable to the pre-
trained embeddings.

3.4 Hyper-parameters We tune our model using
the following five hyper-parameters (chosen values in
parentheses): dropout (0.3), max. epoch (20), word and
character dimensionality (300 and 100), and optimiza-
tion method (adam). Since the training cost is expensive
for deep learning models, we do not grid-search all the
combinations of these parameters. Instead, we optimize
one hyper-parameter at a time by fixing the rest of the
hyper-parameters.

4 Productization

Productization is the key to delivering a real-world
impact, and there are two correlated challenges, speed
and cost. Firstly, the model execution has to be fast
enough to serve thousands of queries per second and
help retrieve search results within a time limit. The

Table 7: Top three similar words for "milwaukee",
vocabulary coverage, and F1 score at iteration 1 of the
four word embeddings.

embedding
similar

words

vocab

coverage
F1

pre-trained
GloVe

chicago

detroit

minneapolis

39.8% 87.56

pre-trained
Word2vec

springfield

harvey

wisconsin

15.5% 83.99

custom
GloVe

m18

dewalt

drill

99.9% 87.58

custom
Word2vec

dewalt

makita

ridgid

99.9% 88.82

speed has a direct impact on user satisfaction and
conversion rate. Secondly, the cost of serving the
model has to be reasonably low to justify the return
on investment. More details are explained below.

4.1 Deployment The first challenge is speed, and
a practical solution is to leverage an existing platform
with customized optimization. Specifically, the model
is deployed using Tensorflow Serving, a flexible and
high-performance model serving system by Google, on
the Google Cloud Platform (GCP). This can provide a
stable environment but still not an optimized one. Thus,
we customize the optimization by reducing the servable
model size which has a direct impact on the model
inference time. This involves converting the variables in
a Tensorflow checkpoint into constants stored directly in
the model graph, stripping out unreachable parts of the
graph, folding constants, folding batch normalizations,
removing training and debug operations, etc. In our
experience, the optimized model has a significantly
smaller size, faster loading, and faster inference.

The other challenge is cost. Serving the deep
learning model on a GPU machine would be fast but
also much more expensive. We manage to optimize the
model for CPU to meet our performance requirement
and deploy it on a GCP virtual machine instances
with custom CPU machine type (4 vCPUs, 3.75 GB
memory). This deployment automatically scales to real-
time traffic, leading to a very cost-effective solution.

The model has been live in production for an ex-
tended period of time. We see that the model service
can serve 99% of the search queries within 26 millisec-
onds, including the time for query pre-processing, model

6 Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

inference, and post-processing. This is highly satisfac-
tory for our search engine. This concludes a successful
engineering deployment of the model.

4.2 A/B Test and Business Impact The deep
learning model service was A/B tested against the
legacy NER system with equally random traffic split
at homedepot.com. With millions of search visits from
real online shoppers, we saw a significant improvement
in both click-through-rate and revenue per search. The
estimated business impact is $60M in incremental rev-
enue. The cost is minimal comparing to its benefit and
the existing search engine operating cost, so this project
is yielding a high return on investment. Detailed met-
rics measured from the A/B test are confidential and
not disclosed here.

5 Conclusion

Our work demonstrates an end-to-end solution to apply
a state-of-art deep learning model in a domain-specific
industrial problem, i.e. named entity recognition for
e-commerce search queries. We propose a framework
to address the remaining challenges regarding training
data, domain knowledge, and production. We solve the
training data challenge by leveraging general-purpose
data to prepare three separate sets of training data.
Then these three datasets are used to iteratively train
the model using customized domain-specific word em-
beddings. We demonstrate that this iterative process
is effective at improving model performance. The best
model has been deployed in production as a real-time
web service by using both the existing platform and cus-
tomized optimizations. The model A/B test and day-
to-day use at homedepot.com show stable model perfor-
mance, increasing user engagement, and increased rev-
enue, which proves the significant value of our work.
Moreover, the framework highlighted may be general-
ized to solve other domain-specific industrial problems
in data science and machine learning.

References

[1] David Nadeau and Satoshi Sekine. A survey of named
entity recognition and classification. Lingvisticæ In-
vestigationes, 30(1):3–26, 2007.

[2] Vikas Yadav and Steven Bethard. A survey on recent
advances in named entity recognition from deep learn-
ing models. arXiv preprint arXiv:1910.11470, 2019.

[3] Jeffrey Pennington, Richard Socher, and Christopher
Manning. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empiri-
cal methods in natural language processing (EMNLP),
pages 1532–1543, 2014.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[5] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep contextualized word representa-
tions. arXiv preprint arXiv:1802.05365, 2018.

[6] Erik F Sang and Fien De Meulder. Introduction to the
conll-2003 shared task: Language-independent named
entity recognition. arXiv preprint cs/0306050, 2003.

[7] Ronan Collobert and Jason Weston. A unified archi-
tecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of
the 25th international conference on Machine learning,
pages 160–167, 2008.

[8] Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natu-
ral language processing (almost) from scratch. Jour-
nal of machine learning research, 12(Aug):2493–2537,
2011.

[9] Changki Lee. Lstm-crf models for named entity recog-
nition. IEICE Transactions on Information and Sys-
tems, 100(4):882–887, 2017.

[10] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional
lstm-crf models for sequence tagging. arXiv preprint
arXiv:1508.01991, 2015.

[11] Xuezhe Ma and Eduard Hovy. End-to-end sequence
labeling via bi-directional lstm-cnns-crf. arXiv preprint
arXiv:1603.01354, 2016.

[12] Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. Neu-
ral architectures for named entity recognition. CoRR,
abs/1603.01360, 2016.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in neural information processing systems,
pages 5998–6008, 2017.

[14] Yijin Liu, Fandong Meng, Jinchao Zhang, Jinan Xu,
Yufeng Chen, and Jie Zhou. Gcdt: A global context
enhanced deep transition architecture for sequence
labeling. arXiv preprint arXiv:1906.02437, 2019.

[15] Papers With Code. Papers with code - named entity
recognition, 2020.

[16] Chao-yuan Wu, Amr Ahmed, Gowtham Ramani Ku-
mar, and Ritendra Datta. Predicting latent structured
intents from shopping queries. WWW 2017, 2017.

[17] Bodhisattwa Prasad Majumder, Aditya Subrama-
nian, Abhinandan Krishnan, Shreyansh Gandhi, and
Ajinkya More. Deep recurrent neural networks for
product attribute extraction in ecommerce. arXiv
preprint ArXiv:1803.11284, 2018.

[18] Musen Wen, Deepak Kumar Vasthimal, Alan Lu, Tian
Wang, and Aimin Guo. Building large-scale deep learn-
ing system for entity recognition in e-commerce search.
In Proceedings of the 6th IEEE/ACM International
Conference on Big Data Computing, Applications and

7 Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Technologies, pages 149–154, 2019.
[19] Brooke Cowan, Sven Zethelius, Brittany Luk, Teodora

Baras, Prachi Ukarde, and Daodao Zhang. Named
entity recognition in travel-related search queries. In
Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, AAAI’15, pages 3935–3941.
AAAI Press, 2015.

[20] Ajinkya More. Attribute extraction from product titles
in ecommerce. CoRR, abs/1608.04670, 2016.

[21] Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li.
Named entity recognition in query. In Proceedings
of the 32nd international ACM SIGIR conference on
Research and development in information retrieval,
pages 267–274. ACM, 2009.

[22] Duangmanee (Pew) Putthividhya and Junling Hu.
Bootstrapped named entity recognition for product
attribute extraction. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing,
EMNLP ’11, pages 1557–1567, Stroudsburg, PA, USA,
2011. Association for Computational Linguistics.

[23] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

8 Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

