
The Home Depot, 2455 Paces Ferry Rd SE, Atlanta,

GA 30339

1

Detecting and Correcting Real-Word Errors in E-Commerce Search ∗

Jared Moore, Mingzi Cao, and Rongkai Zhao

March 8, 2020

Abstract

When searching for products on an e-commerce site,
user input is often subject to error. Simple spelling
errors such as ”hamer” instead of ”hammer” are typi-
cally easy to detect and correct, as the original term,
”hamer,” will not be present in the dictionary that the
system is using. A much harder class of errors to detect
and correct are Real-Word Errors (RWEs) that occur
when all of the words in a phrase are present in a dic-
tionary, but the phrase itself does not make sense, such
as ”hammer grill” (instead of ”hammer drill”). We im-
plemented existing RWE detection methods (based on a
confusion set) into our Spell Correction system and cal-
culated accuracy on a hand-labeled dataset. After that,
we used our confusion set to come up with an occur-
rence estimate for RWEs in the search space. Finally,
we built a novel classification method based on our cus-
tomer behavior data that can filter out false positive
RWEs queries with high accuracy.

1 Introduction

In the study of e-commerce search (or any form of
text search), the developers of the search engine are
subject to the search terms (or queries) entered by their
users. While most of the search terms may be well-
formed, any sort of user input is known to be subject
to human error, like spelling errors, which have been
well-studied in academia. Many approaches exist for
fixing traditional spelling errors, such as ”hamer” →
”hammer”. These errors are typically referred to
as Non-Word Errors (NWEs) since the original term
is not a word. There have even been studies and
patents on different approaches that one should take
when correcting spelling on different devices, such as
phones[1]. Another area inside of spell correction that
has received a lot of attention (and is the focus of
our paper) is the domain of real-word errors (RWEs).
Unlike a NWE, an RWE is a spelling error that is
present not because the spelling of any individual token
is incorrect (i.e. not present in a our dictionary) but

∗Keywords: spell correction, e-commerce, search engine, real
word errors, clustering

instead because the phrase itself does not make sense.
Much research has gone into the area of tokenization
in Natural Language Processing (NLP) and we do not
attempt to address the topic in this paper. Pinto et.
al provides one good summary of existing methods[2]
if interested. For our context, we refer to a token as
any string of characters separated from another by any
amount of whitespace. Consider the phrase ”brown
much.” Both ”brown” and ”much” are valid words in the
English language but together the phrase does not make
a lot of sense. Suppose we had a spell correction system
that corrected ”much” to ”mulch” in this instance. Now
we have the query ”brown mulch” which is a popular
home improvement product. However, there are valid
cases that the word ”much” could be used, so it cannot
be replaced by ”mulch” in all cases. In this paper, we
conduct three experiments with the goal of detecting
and correcting RWEs.

1.1 Related Work Starting as early as 1980, there
has been research done in the area of automated spell
correction[3][4] by James Peterson. His paper did not
specifically call out RWEs, but simply identified spelling
errors as missing, extra, wrong, or transposed letters.
RWEs can indeed fall into Peterson’s classification, but
are much harder to detect than the situation where the
token is not present in a dictionary. Though they did
not adopt the terminology ”Real Word Error,” Mays et.
al extended Peterson’s research by acknowledging the
fact that such errors existed and proposing a solution
to detect them[5]. These early approaches used a
probabilistic model to decide if a token belonged in
a given bigram or trigram, which will be used when
describing our approach to fix RWEs. A different
approach by Burnard and McEnery used part-of-speech
tagging to determine when a specific word did not
belong in a sentence[6]. Both Mays et. al and Peterson
noticed that the ability to decide if a phrase contained
a spelling error was related to the size of the dictionary
that the spell correction system was using, and noted
that as size increased, the computational power needed
for the system would also increase. Wilcox-O’Hearn et.
al extended the research done by Mays et. al to see

2

what actual performance would be on a real dataset,
rather than one with synthetically generated errors[7],
and found the F1-score of corrections to be at best
70%, and usually much lower. As mentioned in Section
2.2, The Home Depot (THD) needs a high-accuracy
algorithm if we were to implement any approach.

Around 2005, literature started appearing that was
formally calling out RWEs[8] as Real Word Errors.
Pedler and Mitton described them as ”Cupertinos,”
referring to the behavior of an old version of Microsoft
Word when a user typed in ”cooperation” instead of
”co-operation”[9]. Many studies, such as the one done
by Wilcox-O’Hearn, involve using a synthetic dataset
instead of real data since it is much easier to generate
labeled data than to find RWEs in real text[10]. Two
interesting studies using real data was done by Max
and Wisniewski in 2010 and Hesch in 2012, where they
used Wikipedia revision history in an attempt to build
a model that could detect when a word was used in the
wrong context[11][12].

What we have seen in the existing studies is one
main shortfall that is very difficult to overcome in an
academic setting: the research was not done on a large
corpus of real user data. Sometimes the dataset is
synthetic, other times it is very small. Regardless, what
we are contributing to the space of RWE detection
and correction is how these algorithms that are being
discussed might perform in an enterprise setting. We
believe our research will start to shine a light on the
algorithms that are worth further pursuit and highlight
other factors such as runtime that are not usually
considered when doing academic research on the topic
of spell correction.

2 Detecting Real-Word Errors

The first experiment we ran was to produce empirical
results based on our analysis of user-behavior data for
RWEs using an algorithm we developed for our spell
correction (SC) system based off the approaches used in
current literature. As Wilcox-O’Hearn noted, detecting
RWEs is the hardest part of the SC problem: once
an RWE can be detected, fixing them is very similar
to fixing any other spelling error[10]. Our approach
to correcting RWEs is similar to the one proposed
by Semanta and Chaudhuri[13], but it contains some
important differences. We present the first empirical
study on real search data, rather than a synthetic
dataset or a different form of text, and the largest study
on RWEs to date. Peddler and Mitton pointed out that
while there have been many studies using confusion sets,
they are typically the same set, or a very small set of
data[9]. Even Peddler and Mitton’s study, which used
a larger set of words than had been studied before, only

examined a document with 21524 total (non-unique)
words and they identified 833 RWEs. The results from
Peddler and Mitton’s work imply that about 4% of all
tokens are RWEs. But will this apply to our industry
and to search terms instead of blocks of text? While
such studies are indeed useful in the abstract sense, it
is difficult to see if the approach will work for a specific
domain or with larger datasets.

2.1 Our Domain THD has a dictionary of over
50,000 words and processes millions of searches every
single day. Our search terms are typically 2-3 tokens
in length and last year we saw over 10 million unique
tokens. With such volume, will the approaches that
worked for 20,000 words work for us? Our results are
especially important to others working in the domain
of e-commerce search. Further to this point, until
now, there have been very few major published studies
regarding RWE correction in the search space. Most
studies that have been conducted are instead for text in
general. For reasons described in Section 2.4, the search
space is fundamentally different than general text input,
and is important to study independently, although there
are still many similarities.

2.2 Considerations regarding the Feasibility of
Approaches At THD, we have a collection of services
that work together in order to provide a high-quality
search experience to the customer. Because it’s role
in this collection, our SC service only has a very
limited timeframe to respond to the service that calls
it. While there have been many different approaches
to fixing RWEs, such as [5], [14], [8], [7], [10], [13],
and [15], we only focused on those that we believe can
fit into the total spell correction runtime requirement
(hereby referred to as the Service Level Objective, or
SLO). While we wholeheartedly believe more accurate
solutions could be developed, algorithms that could
not fit within our SLO were not considered in our
experiments. Another point to keep in mind is that
some algortihms, such as the one proposed by Hirst
and Budanitsky[8], provide an estimated accuracy of
around 20%, which would make it difficult to justify
the algorithm if it was the only one used. That being
said, any algorithm that improves our overall accuracy
(i.e. fixes more errors than it breaks) without sacrificing
runtime is a candidate to move to production.

2.3 Considerations regarding the existing THD
Spell Correction Service While this paper will dis-
cuss approaches to identifying and correcting RWEs, it
is important to acknowledge that the THD SC service
consists of an ensemble of algorithms that we have de-

3

signed to work together to fix all spelling errors it sees.
It is outside of the scope of this paper to discuss exactly
how those algorithms work, though in Section 4, per-
formance before and after adding our RWE-correction
algorithm to the ensemble will be shown.

2.4 The Search Space As mentioned earlier in Sec-
tion 2, the search space is not the same as when a user
is writing a sentence or series of sentences. The research
done by Max and Wisniewski and Hesch examined the
occurrence of spelling errors in Wikipedia, which is a
collection of full paragraphs written by users. As men-
tioned earlier, we have user queries that have a length
of 2-3 tokens on average. While other researchers have
been able to detect the occurrence of RWEs in longer
sentences (Golding and Roth even defined the problem
as requiring a sentence[14]), would they even happen in
a shorter phrase like a search query? Knowing the do-
main, it is easy to come up with hypothetical examples:
consider a user searching for ”hammer grill” instead of
”hammer drill”. But do these queries happen? If so,
how often do they happen? Singh and Singh claimed
that RWEs represent 35% of all spelling errors (in Hindi,
but perhaps this applies to other languages as well1)[17].
If this is actually the case, fixing all RWEs (or at least
trying) could be a huge lift for THD. As mentioned in
Section 2, there have been surprisingly few studies on
how often RWEs occur, usually studies focus on how
to detect and/or fix them. See Section 4.1 to see our
estimate of how often RWEs occur in our query log.

It is important to note that our experiments discuss
performance on datasets that are specific to THD user
search queries, though we hope that the results will
be applicable in the general sense. As we implied in
Section 2, the THD spell correction system has its
own dictionary based on the search terms that we get.
Our dictionary will likely be different than any other
dictionary used, especially those in academia, as we have
to handle words like brand names that are not present
in the English language. Further, not all words in the
English language are relevant to our domain, and thus
we do not need to include them in our dictionary. Since
our data is proprietary, the datasets used cannot be
released publicly.

3 Implementation

In this paper, we provide three main findings: first,
the accuracy improvement we saw when we tried to fix

1Fashola et. al did some early research on the patterns of
spelling errors for students learning a new language (specifically

English to Spanish)[16], but to this date there have not been
any studies on the similarities of spelling errors across different

languages.

them, second, the estimated occurrence of RWEs in our
query log by volume, and third, our effort to make an
RWE classifier using customer behavior data. While
the majority of the approaches described in Section 1.1
typically rely on synthetic datasets in order to calculate
accuracy, at THD we have the advantage of having
access to a vast dataset of user-entered queries. Because
of this dataset, we are able to check and see how often
any suspected RWE query actually happens on our
website, if at all. In order to come up with potential
RWE candidates, we started by generating a confusion
set, similar to the ones done by Mays et al. and by
Fossati and Di Eugenio in their respective studies[5][18].
Mays et al. used (Levenshtein) edit distance to find
similar words for each word in a dictionary that were
within a single letter edit. Fossati and Di Eugenio
used phonetic and orthographic methods to find similar
words, but, in the abstract sense, both approaches
were based on the process of ”given each word in a
dictionary, find all of the valid similar words that it
could be mistaken for.” Peddler and Mitton used a
similar process to Mays et. al, taking all candidates for a
given word and ranking them using the process Mitton
developed, in his 1996 research on developing a spell
corrector[9][19], to find the best replacement for a token,
given a set of candidates. Instead of only finding a single
replacement, when we started investigating RWEs in
our query log, we did not want to filter out any potential
candidates and start with the largest set possible.

3.1 Initial Candidate List To come up with the
initial confusion set, we used a combination of the
approaches taken by Mays et. al and by Fossati and
Di Eugenio. Suppose we have a dictionary D that is
a set of words in our space, where |D| > 1. Suppose
L(x, y) is a function that will return the Levenshtein
distance between x and y, P (x) returns a set of tokens
with the same phonetic code[20] as x, and S ← S ∪ x
denotes adding an element x to the set S. The algorithm
described in Algorithm 1 shows this process.

Running Algorithm 1 results in a large confusion
set, mapping unigrams to sets of unigrams. Now, as
pointed out in other research, even as early as Peterson’s
first paper, there are two pieces to the spell correction
process: identification of errors (spell checking) and
fixing the errors (spell correction). In other research,
such as Pedler’s thesis[21], we see the confusion set being
used to see if the probability of there being an error
decreases when a word is replaced with one from the
confusion set, which makes sense intuitively. However,
as we mentioned in Section 2.2, this is not how the THD
SC system is built and we need a solution that will fit
into existing system and comply with our strict runtime

4

Result: M < u,S > a map, mapping a unigram
u to a set S of candidates u could be
replaced with

M ← ∅;
2 foreach word ∈ D do

S ← ∅;
foreach other ∈ D do

if word 6= other ∧ L(word, other) ≤ 2
then

S ← S ∪ other;

end
foreach other ∈ P (word) do

if L(word, other) ≤ 3 then
S ← S ∪ other;

end
M ←M∪ < word, S >;

end
return M

Algorithm 1: Generating Unigram Confusion Can-
didates

requirement.

3.1.1 Aside on the THD Spell Corrector At
THD, we have split the spell correction problem into
three pieces: candidate generation, aggregation, and
ranking. For simplicity, let us assume that our SC
system has already decided that the input query is
spelled incorrectly (or at least has the potential to be
improved). During the candidate generation phase, we
take each token, and generate possible replacements for
that token (this does not include the RWE confusion
set). During aggregation, we take every combination
of the candidates, then pass those to a ranking system
and choose the highest-ranked suggestion. Suppose we
started with the tokens ABC, that A had a candidate
A′, and C had a candidate C ′. The resulting strings that
are sent to the ranker are ABC,A′BC,A′BC ′, ABC ′.
Clearly, if each unigram had many possible RWE re-
placements, the total candidates could explode and take
a lot of time to be ranked. See Figure 1 for a visualiza-
tion of the candidate aggregation process.

3.1.2 Bigrams instead of Unigrams Looking at
Figure 1, one can easily see how adding many potential
candidates could explode the total query strings we send
to the ranker. While others such as Fossati and Di
Eugenio, Mays et. al, and Peddler and Mitton generated
candidates for individual words, we instead decided to
generate candidates for bigrams. The goal of such a
confusion set is to ultimately be able to decide, given an
input bigram, if there was an RWE and, if so, the ideal

ABC

A A′

B

C C ′

END

Figure 1: Sample of aggregation process. Here the
candidates ABC,A′BC,A′BC ′, ABC ′ will be sent to
the ranker.

replacement for the bigram. To do this, we took every
permutation of 2 tokens from our dictionary and put
them into a set with every possible RWE replacement
for each unigram. For each of the sets we generated,
we took the bigram with the highest occurrence in our
query log and marked it as the ”correct” bigram, and
the rest as possible RWEs. One check we did was to
ensure there were no chains of mappings, for instance
if bigram AB was mapped to CB and then CB was
mapped to DC. Any cases that were found with such
a chain simply set the last node in the chain as the
correct bigram for each node preceding it (we did not
find any cycles while doing this). Some examples from
our confusion set can be seen in Figure 2.

3.2 Picking the Correct Replacement After ag-
gregating all of the candidates for the query, we then it-
erated through all of the tokens in each candidate using
a sliding window of size 2. For each element in the win-
dow, we check the bigram against our RWE candidate
set and then add the replacement as a new candidate
in the query candidates. When we move to the next
window, we mark the previous tokens as ”final” and
no longer check for new RWEs. However, new queries
added to our query candidates will be checked for addi-
tional RWEs starting at the first non-final token. There

5

Correct Bigram RWE Bigrams
brita faucet [”britta faucet”,

”britta facet”, ”britt
faucet”, ”brita facet”]

roof hammer [”room hammer”,
”rough hammer”,
”ruff hammer”, ”roof
hummer”]

tile drill [”tale grill”, ”tite
drill”, ”till drill”,
”tile grill”, ”tile dill”,
”title grill”]

Figure 2: Selected examples of bigrams from our confu-
sion set

will be no such instance where one RWE replacement
leads to another (per design in the confusion set), so
that will not generate additional candidates. Once this
is done, we then pass the data to our ranking service,
which chooses the best correction. In the context of this
study, we only changed the candidate generation process
and the ranker was not touched. For simplicity, one can
think of the ranker simply as a function that takes in
how often the candidates appear in the THD query log
as well as some other features and returns a scalar value
(and we select the highest value as the correction).

4 Results of Fixing RWEs on Hand-Labeled
Datasets

How did the change we made perform compared to
how we were doing before? While other studies exam-
ined the performance against well-known datasets, these
datasets are not necessarily relevant to THD. As men-
tioned in Section 2.4, our SC system has been designed
to correct THD-specific search terms and may not be
applicable to general datasets, so the percentages below
may or may not apply in the general sense. More re-
search would need to be done to examine the similarities
of spelling errors between search and other forms of text.
To properly measure the accuracy of our implementa-
tion, we created a hand-labeled dataset of around 1500
RWEs from our query log. Every single example was an
actual RWE that we expected to be changed to some
ground truth correction. We also ran a test against our
standard regression suite, consisting of a random sample
of 2200 queries from our query log, hand-labeled as cor-
rect or incorrect, with the best correction for the query
if it is incorrect. None of the errors in the regression
set have been classified as RWE or non-RWE, but since
it is a random sample from our query log, the dataset
likely contains some RWEs. In our regression set, about

Algorithm RWE Set Regression
Base 4.80% 79.18%

Base + RWE 19.99% 76.01%

Figure 3: Results of our tests on the RWE and Regres-
sion datasets.

57% of the queries are spelled correctly, and the rest are
incorrect, so an accuracy value of 57% would be the triv-
ial approach of not changing any queries. We ran a test
against both the regression set and the RWE set and the
results of our experiment can be seen in Figure 3. As
expected, the RWE fix did increase the accuracy on the
RWE dataset, by 15.19%. We saw a slight drop in the
overall regression set but the lift in RWE performance
may offset this reduction, depending on the occurrence
of RWEs in our query log (discussed in Section 4.1). To
explain the drop in the regression set, we believe that
the RWE corrector was adding additional candidates
that got ranked higher than the other ones but were
not the best replacement for the original query. More
work would need to be done to tune the algorithm so it
does not interfere with the existing correctors.

4.1 Occurrence of RWEs As promised in Section
2, we also spent some effort to determine the frequency
of RWEs occurring in our query log. If it turns out that
these errors do not happen very frequently, maybe the
effort to fix them is not worth the investment. Luckily,
this was not the case. To figure out an estimate of RWE
occurrence we tried the following. To start, we took
our bigram confusion set and looked up how often the
original queries (suspected errors) occurred in our query
log. We simply looked for the presence of the bigram
inside of a search term, no investigation was done to
see if the presence of other tokens on either side of the
bigram changed the phrase enough for it to no longer
be an error. These original queries comprise about
4% of our total query volume, nowhere near the 35%
estimated by Singh and Singh. Interestingly enough,
this is very close to the percentage of words that were
RWEs that Peddler and Mitton found to be RWEs in
their document, though whether words in a document
and search terms have the same error rate in general
remains to be seen.

Now, we had a suspicion that this list of suspected
RWEs was not 100% so we wanted to see an approx-
imate accuracy of our identification process. We took
a random sample of 1000 queries from the candidate
set and hand-labeled each query as an RWE or not an
RWE. What we saw was that about 70% of our sus-
pected RWEs were actually RWEs, which we were quite

6

pleased about as it is higher than what Wilcox O’Hearn
found in her paper when she performed a similar exper-
iment. We then multiplied the accuracy value by the
occurrence, giving us the estimate of 4%× 80% = 2.8%
of our annual query volume containing an RWE. Given
that we now have labeled RWE data, can we use this
dataset to do better at detecting RWEs?

5 Building a (non-)RWE classifier

After seeing the accuracy of our confusion set, we won-
dered if we could do better using additional data sig-
nals. Since we have access to a vast amount of customer
data, we wondered if we can use the information about
how our customers behave when searching the different
phrases to help us determine whether or not a phrase is
an RWE.

5.1 Methodology What are the best customer met-
rics that we can use to enhance our understanding of
RWEs? Looking at our customer data, we have many
related data points, for example: product clicks, cart
adds, and purchases. For simplicity, we assume a pur-
chase needs to have a cart add first, and a cart add
needs a click first. As expected, we have less purchases
than cart adds, and less cart adds than clicks. In or-
der to have the best signal of search term effectiveness,
we decided to go with clicks as our first feature. The
second feature we used was already incorporated in a
way in our confusion set: annual search volume. The
intuition here is the more often a term is searched, the
more likely it is to be correct (as found by Whitelaw
et. al in 2009 [22]). Third, we integrated the usage of
another feature of our website: type-ahead (TA). Our
TA system recommends search terms roughly based on
a combination of occurrence and revenue (so it should
be slightly related to the first two features), but the way
it was built, there should never be any form of spelling
error in the suggestions. We suspected that the more
TA usage we saw for a query, the less likely it would be
an RWE. A plot of a sample of our RWE candidate set
and some high-volume queries can be seen in Figures 4
and 5. We decided to add high-volume queries as well
since the most popular queries on our website are al-
most definitely not RWEs, and any classifier we make
should definitely not flag them as RWEs.

In the graph in Figures 4 and 5, we see that the
points in the bottom left corner are a mix of RWEs and
non-RWEs, which seem to be difficult to separate given
the current set of features. However, what we also see
is that the further from that corner a point is, the less
likely it is to be an RWE. Figure 5 especially shows
the separation as all of our RWE candidates are in the
corner while more popular queries are further away in all

Figure 4: A visualization of RWEs and non-RWEs in
our feature space. The blue points are not RWEs and
the orange points are RWEs.

Figure 5: A visualization of RWEs, non-RWEs, and
high-volume queries in our feature space. The RWE
and non-RWE cluster from Figure 4 is represented by
the orange circle in the bottom right.

7

Query Is RWE? (Y/N) Corrected Query
bio soil N N/A

front tires N N/A
dark tiles N N/A

floor fridge N N/A
antic subway Y antique subway

Figure 6: Sample of the queries that are classified as
”non-RWE” by our classifier.

dimensions. To build a classifier off of our observation,
we wanted to make a way to tell if a query belonged in
a given cluster. We could have used the distance from
the center of the cluster, but one look at our graphs
show that our clusters are not spherical. Instead we
used the average inter-point distance between all of the
points in the cluster to every other point to calculate
the mean and standard deviation for distances between
points. Using these measurements, we made a simple
classifier that would label a point as non-RWE if it was
more than 1 standard deviation from the mean after
calculating the average inter-point distance.

5.2 Classifier Results While we did originally build
the classifier with the intent of detecting RWEs, we
were only able to achieve the opposite. As seen in
Figures 4 and 5, the RWE and non-RWE points from
our confusion set are mixed in the bottom cluster. As
we expected, the high-volume terms were completely
separate from the other cluster. A sample of the queries
classified as ”non-RWE” from our classifier can be seen
in Figure 6. After manually inspecting the results,
we found that 100% of the high-volume queries were
classified as non-RWE. Of the queries from the confusion
set that were outside of 1 standard deviation, 93%
were correctly labeled as not RWEs, giving us very high
confidence in our classifier.

6 Conclusions

What we have discovered in our study is that while
RWEs do occur in a significant percentage of our query
volume, fixing them is not easy to do without breaking
other fixes. We built a confusion set with potential
replacements similar to the work done in previous
research, but what we found was that this confusion
set was only able to give us a minor improvement fixing
RWEs. To improve our ability to detect RWEs, we set
out to develop a way to classify a search term as an RWE
or not an RWE. Using customer behavior features such
as search volume, type-ahead usage, and clicks, we were
able to develop a novel classification method to help
identify queries that are not likely RWEs. While our

classifier was not able to easily separate RWEs from
all non-RWEs, it is able to identify queries that are
not RWEs with high confidence, allowing us to further
filter down our confusion set and ideally achieve higher
accuracy fixing RWEs.

7 Acknowledgements

We would like to acknowledge Nagaraj Palanichamy
for helping with part of the implementation of the
algorithms described in this paper.

References

[1] Nicole Coddington, 05 2014.

[2] Alexandre Pinto, Hugo Gonçalo Oliveira, and
Ana Oliveira Alves. Comparing the Performance
of Different NLP Toolkits in Formal and Social
Media Text. In Marjan Mernik, José Paulo Leal,
and Hugo Gonçalo Oliveira, editors, 5th Sympo-
sium on Languages, Applications and Technologies
(SLATE’16), volume 51 of OpenAccess Series in
Informatics (OASIcs), pages 3:1–3:16, Dagstuhl,
Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[3] James L. Peterson. Computer programs for detect-
ing and correcting spelling errors. Commun. ACM,
23(12):676–687, December 1980.

[4] James L. Peterson. A note on undetected typing
errors. Commun. ACM, 29(7):633–637, July 1986.

[5] Eric Mays, Fred J. Damerau, and Robert L. Mer-
cer. Context based spelling correction. Information
Processing & Management, 27(5):517 – 522, 1991.

[6] Lou Burnard and Tony McEnery. Rethinking
Language Pedagogy from a Corpus Perspective.
Peter Lang, Bern, Switzerland, 2000.

[7] L. O’Hearn, Graeme Hirst, and Alexander Budan-
itsky. Real-word spelling correction with trigrams:
A reconsideration of the mays, damerau, and mer-
cer model. pages 605–616, 02 2008.

[8] Graeme Hirst and Alexander Budanitsky. Correct-
ing real-word spelling errors by restoring lexical co-
hesion. Natural Language Engineering, 11:87–111,
2005.

[9] Jennifer Pedler and Roger Mitton. A large list
of confusion sets for spellchecking assessed against
a corpus of real-word errors. In Proceedings of
the Seventh International Conference on Language
Resources and Evaluation (LREC’10), Valletta,

8

Malta, May 2010. European Language Resources
Association (ELRA).

[10] L. Amber Wilcox-O’Hearn. Detection is the central
problem in real-word spelling correction. CoRR,
abs/1408.3153, 2014.

[11] Aurélien Max and Guillaume Wisniewski. Mining
naturally-occurring corrections and paraphrases
from Wikipedia’s revision history. In Proceedings
of the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10), Val-
letta, Malta, May 2010. European Language Re-
sources Association (ELRA).

[12] Torsten Zesch. Measuring contextual fitness us-
ing error contexts extracted from the Wikipedia
revision history. In Proceedings of the 13th Con-
ference of the European Chapter of the Association
for Computational Linguistics, pages 529–538, Avi-
gnon, France, April 2012. Association for Compu-
tational Linguistics.

[13] Pratip Samanta and Bidyut B. Chaudhuri. A sim-
ple real-word error detection and correction us-
ing local word bigram and trigram. In Proceed-
ings of the 25th Conference on Computational Lin-
guistics and Speech Processing (ROCLING 2013),
pages 211–220, Kaohsiung, Taiwan, October 2013.
The Association for Computational Linguistics and
Chinese Language Processing (ACLCLP).

[14] Andrew R. Golding and Dan Roth. A winnow-
based approach to context-sensitive spelling correc-
tion. CoRR, cs.LG/9811003, 1998.

[15] Sumit Sharma and Swadha Gupta. A correction
model for real-word errors. Procedia Computer
Science, 70:99–106, 12 2015.

[16] Olatokunbo S. Fashola, Priscilla A. Drum,
Richard E. Mayer, and Sang-Jin Kang. A cognitive
theory of orthographic transitioning: Predictable
errors in how spanish-speaking children spell en-
glish words. American Educational Research Jour-
nal, 33(4):825–843, 1996.

[17] S. Singh and S. Singh. Review of real-word error de-
tection and correction methods in text documents.
In 2018 Second International Conference on Elec-
tronics, Communication and Aerospace Technology
(ICECA), pages 1076–1081, March 2018.

[18] Davide Fossati and Barbara Di Eugenio. I saw tree
trees in the park: How to correct real-word spelling
mistakes. In LREC, 2008.

[19] Roger Mitton. English spelling and the computer.
Longman, 1996.

[20] Lawrence Philips. Hanging on the metaphone.
Computer Language Magazine, 7(12):39–44, De-
cember 1990. Accessible at http://www.cuj.com/
documents/s=8038/cuj0006philips/.

[21] Jennifer Pedler. Computer correction of real-word
spelling errors in dyslexic text. PhD thesis, Birk-
beck, London University, 2007.

[22] Casey Whitelaw, Ben Hutchinson, Grace Y Chung,
and Ged Ellis. Using the Web for language in-
dependent spellchecking and autocorrection. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages
890–899, Singapore, August 2009. Association for
Computational Linguistics.

9

