
A Cognitive User Model for E-Commerce Search

Sahiti Labhishetty∗ Chengxiang Zhai∗ Suhas Ranganath† Pradeep Ranganathan‡

Abstract

We present a novel cognitive user model for E-
Commerce (E-Comm) search that goes beyond existing
user models to model a user’s cognitive state, includ-
ing the information need and knowledge state of the
user. The model includes components to model all the
major search behavior of a user, including query formu-
lation, clicking on results, and query reformulation, and
thus provides a complete model for users of E-Comm
search. The model has interpretable parameters that
can be estimated using E-Comm search log data to an-
alyze and understand users’ behavior as well as can be
manually adjusted to simulate different kinds of users.
The trained user model using the search log can also be
used to simulate users or analysis of search log. Prelim-
inary evaluation on an E-Comm search log shows that
the model performs well for predicting user behavior in
a search session. The analysis of search sessions reveals
multiple interesting findings about the search behavior
of E-Comm search users.

1 Introduction

A formal User Model has multiple applications, it
can be used for user simulation which can be used
for evaluating interaction search system, to analyse
user behaviours search sessions, and to optimize search
engine interaction with the user. In this paper, we
propose a conditional generative user model for mining
E-Comm search log to understand users’ behavior, with
an emphasis on modeling user’s cognition by modelling
user’s changing knowledge, information need, and query
reformulation. The main idea of the proposed model is
the generation of all important user actions in a whole
user session conditioned on the target product that the
user attempts to buy (information need) and a starting
point like the initial query. Compared with previous
work, the novelty of our model is: 1)it explicitly models
the user cognitive state and update of the state to model
different user behaviour characteristics in one unified
model. 2)the query formulation/reformulation model is

∗University of Illinois, Urbana-Champaign, USA.

{sahitil2,czhai}@illinois.edu
†WalmartLabs, India. Suhas.Ranganath@walmartlabs.com
‡Lyft,USA. mail.pradeepr@gmail.com

studied in depth and the query reformulations in search
log are also used for analysis. 3)The interpretable model
parameters can be learned from the search log and it
can be fit to even single session to identify specific user
behaviour. Our model has several benefits, it can be
used (a) as a tool to identify interesting user behaviour
patterns in search log (b) to generate or simulate user
sessions given an input information with varying user
behaviours by altering the parameters. We evaluate
the model on an E-comm search log and also show
that the model can be used to analyze user behavior in
multiple ways. Our results show that (1) users generally
differ in exploration/non-exploration behaviour (2) the
variance in behaviour is larger for same user purchasing
different products than compared to that of different
users buying same product. The model can have many
other uses including user simulation which can in turn
be be used to evaluate interactive search systems, it can
be used to optimize the search engine interaction with
a user.

In E-commerce, there are only only few works [4]
analysing queries and user behavioural patterns through
search log. In web search, there are works analysing or
predicting user purchase or browsing behaviour [5, 6, 7,
8] but these works do not generalize to E-comm search
log. The user simulation models in Web search[3, 2, 1]
cannot be generalized to generate user interaction in
E-comm. None of the above works consider cognitive
aspect of the user in E-comm and lack the novel factors
of our work described above.

2 A Cognitive State User Model (CSUM)

The proposed formal cognitive state user model
(CSUM) is meant to formally model how an E-Comm
user searches. Since a user generally starts with an in-
formation need (IN) in mind, CSUM is a conditional
generative model conditioned on some assumed IN and
knowledge which can be based on the input. Given such
an assumed/initial IN and knowledge, the model would
then attempt to model (1) how a user formulates the
very first query, (2) how a user might reformulate the
query (as needed), and (3) how a user would respond to
the search results (which result to click on) (4) how the
IN and knowledge will be updated which can be poten-
tially repeated multiple times. We now describe CSUM

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

in more detail. Different components of the proposed

Figure 1: Outline of the proposed CSUM model

model CSUM and how they are connected to interact
with search engine are shown in Figure 1.

2.1 Representation of the IN We first need to
model the IN in a user’s mind that has triggered the
search task. In general, we can represent the IN as a set
of probability distributions of all those attribute values
of products preferred by a user. We consider three basic
attributes of a product which most users likely “care
about”: category (C), brand (B), and title words (Ti),
with attribute values {ci},{bi},{ti}, respectively. For
each attribute value , a Bernoulli (binary) variable (e.g.,
VC,c1 ∈ {0, 1}) is used to capture to what extent a user
likes or dislikes the attribute value with p(VC,c1 = 1)
indicating that probability that the user likes products
in the c1 category.

When we estimate CSUM on a search log, we
have access to the final target product purchased by
a user, which we can use to estimate the initial IN
probability distributions of preferred attribute values
by the user. One simple way to define IN is to fix it
to a target product (i.e., setting all the attribute value
probabilities to 1.0), which we will refer to as a Fixed
IN model. Let the probability distribution be denoted
as P (VA,ai |fixed IN) where A is the attribute which
can be C, B, Ti and ai are the attribute values of A.
However, Fixed IN is only appropriate (accurate) if the
user indeed had this particular product in mind and had
never changed mind during the search process but there
is possibility for uncertainty in preferences. To model
this uncertainty, we further introduce an Exploring IN
model where the probability of a target attribute value
is still relatively large, but not 1.0, thus leaving room
for exploration. The probably distribution for Exploring
IN is P (VA,ai |explore IN).

We assume that at any time, the user’s information
need may be “between” the Fixed IN and Exploring
IN, and this preference is potentially attribute-specific
and denoted by P (fixed INA) or P (fA) for short, for
attribute A which can be C, B, Ti. The uncertainty
is captured by a mixture model with P (fA) indicating
the probability of user being in the state of Fixed IN,
thus 1-P (fA) is the probability of being in state of

Exploring IN. In the extreme case of P (fA) = 1, it would
indicate that the user has “made up mind” to go for the
target product (with no desire to explore other attribute
values).

2.2 Representation of Knowledge State From
cognitive IR perspective, the user has knowledge ac-
quired from different types of sources, including knowl-
edge of the product space, knowledge of the search en-
vironment, knowledge of how the search system under-
stands his/her query, and general knowledge of words.
Accurate modeling of users requires modeling such
knowledge; modeling this knowledge is the main nov-
elty of our model as compared with the previous work.

Formally, we represent the knowledge of how a sys-
tem understands the user query (part of knowledge of
the product space) with two conditional distributions:
1) P (cat/wq) denotes the knowledge about the likeli-
hood that a query word wq would lead a search engine to
return a particular category of products cat as retrieval
results. 2) P (wp/wq) denotes the knowledge about the
likelihood that a query word wq would lead a search en-
gine to return a product with word wp occurring in the
brand field or the title field. Further, a user may have
prior knowledge of these mappings based on previous
experience or general knowledge of E-commerce prod-
uct space, we refer to this as Background knowledge(
K1) and it is denoted by Pkb(cat/wq), Pkb(wp/wq). Al-
ternately the user can learn about this knowledge during
the search session using the search results obtained for
a query, we refer to this as Knowledge Learnt and
it is denoted by Pkl(cat/wq), Pkl(wp/wq). The Knowl-
edge Learnt(K2) is a dynamic variable and is updated
throughout the session as the user interacts more with
the search engine and it is specific to the information
need of the user as the queries are specific to the IN .

Further, the knowledge of the product space also
involves knowing the text description of the attribute
values as they are described in the product space. The
user may also know that the search system also uses key-
word matching to obtain the results. Therefore words
that are present in the attribute values is considered as
Keyword matching knowledge(K3). This can be
represented either as a set of words of all attribute val-
ues that are in the context of IN : words in {VA,ai} or as
a probability distribution Pkey m(w|wa) where implies
Pkey m(w|wa) is 1 if w = wa and is 0 for other words
and wa belongs to set of words of all attribute values in
context of IN.

In addition to knowledge of product space, the user
further has Linguistic knowledge(K4) of word mean-
ings. We model this knowledge by approximating the
word similarity of the user to that of the word similari-

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

ties obtained through word embeddings. The word sim-
ilarity score is normalized to make a probabilistic model
similar to K1, K2. For a word w, the similarity between
w and all other words in the context of IN are com-
puted and the top most word similarities are selected
and normalized to form the distribution Psim(w1|w2).

2.3 Update model The user state variables, IN and
knowledge are updated in the following way using the
Update model to simulate what happens to a user during
a session.

2.3.1 Information need update The IN can be
updated either after clicking or skipping each product
in the results page. In the current model, we update
the IN each time after interacting with a page of results
from the system, i.e, after viewing and clicking products
on one result page. The next action can be moving to
the next page or reformulating query or purchasing or
stopping the session.

Formally, if the user observes more attribute values
from the Fixed IN, they prefer them more and therefore
will be closer to Fixed IN and this is captured by
increasing the value of P (fixedIN). P (fA) is updated
for each attribute A if the attribute values of A are
observed. The update is proportional to the probability
of preference of those attribute values. For example,
for attributes like brand the P (VB,bi |fixed IN) can be
high and viewing that brand attribute value bi may
increase the P (fB) to a greater extent. For some of
the title word attributes which are not very crucial, the
P (VT,T ii |fixed IN) can be low, and observing those
attributes may not influence the user so much to update
the IN, therefore the increase in P (fTi) can be less.
Further, the amount of update also depends on the user
preference to explore or not to explore, even though
the user observes the attribute from Fixed IN, the user
might choose to explore more before deciding to prefer
it. This indicates the user behaviour to explore or not
and we capture this using a parameter, let this be λ1.
The increase in P (fA) for attribute A based on observed
attributes {oi} is, Po(fA)

As the session length increases, the user fixes
his/her product preferences and the probability of Fixed
IN should increase as the end point is target product
T . P (fA) is updated along each attribute A and the
amount of update is directly proportional to session
length l. Similar to λ1, there is an additional parameter
that influences the amount of update based on session
length, let this be λ2. This parameter also indicates
user preference to explore, specifically it indicates if the
user wants to explore for more time even with a long
session. But unlike λ1, λ2 is inversely proportional to

increase in the P (fA). The increase in P (fA) along each
attribute A based on session length l is Psession(fA) and
is computed as follows. Note that this update is same
for all the attributes. Therefore P (fA) is updated using
Po(fA) Psession(fA). These probabilities are computed
as
Po(fA) ∝ λ1 ∗ P (VA,{oi}|fixed IN) where {oi} is the
set of observed attribute values among the results.
Psession(fA) = l

f(λ2)+l
where f(λ2) is linear function of

λ2, l is the length of the session until then.
Finally, when a user clicks on a product item they

usually might update their preferences for the attribute
values of the item. The user may like or dislike the
product. The user will likely decrease their preference
for those attribute values that are different from the
Fixed IN i.e, attribute values which are not in target
product T . P (VA,ai) are updated for ai in clicked
products that are not in T . The amount of decrease in
the preference is given by the factor αiupdate. Let Clkp
be the set of clicked product item attribute values.
P (VA,ai) = P (VA,ai) ∗ (1− αiupdate)∀ai ∈ Clkp \ T

2.3.2 Knowledge Update Similar to IN, the user
learns and obtains more knowledge of the product space
while interacting with the system. The user’s knowledge
state is also updated each time after interacting with a
whole page of results form the system. We only update
Knowledge learnt (K2) component of knowledge of the
product space, leaving the exploration of more sophis-
ticated update model as future work. The probability
Pkl(cat|wq) is directly proportional to the count of num-
ber of products from result page that belong to category
cat which have the word wq among its attribute values.
Similarly, the probability Pkl(wp|wq) is proportional to
the number of products from result page which have
both wp and wq among any of its attributes values. For-
mally, let f1(rp, clkp), f2(wp, rp, clkp) be the scores of a
result product p which is ranked at position rp and clkp
is a boolean value which denotes whether the product is
clicked or not. f1(rp, clkp), f2(wp, rp, clkp) are used to
compute P (cat|wq), P (wp|wq) respectively. According
to the hypothesis, the function in inversely proportional
to rp and directly proportional to clkp. Let wpi be all
the words in the attribute values of product p. There-
fore,

Pkl(cat/wq) =

∑
p∈{Pwq,cat}

f1(rp,clkp)∑
cat′

∑
p∈{P

wq,cat′ }
f1(rp,clkp)

Pkl(wp/wq) =

∑
p∈{Pwq,wp}

f2(wp,rp,clkp)∑
w

p′

∑
p∈{Pwq,w

p′
}
f2(w′

p,rp,clkp)

∀wq ∈ query words where the {Pwq,cat} is set of result
products which have wq in wpi and cat as the category.
Similarly {Pwq,wp

} is set of results products which have

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

wq and wp in wpi. w
′
p are all words in product titles and

brand attributes of all result products {P}.
If the session length is more than 1, then for later

session interaction the Pkl,new(cat/wq), Pkl,new(wp/wq)
are computed in the same way as above and are up-
dated to the previous Knowledge learnt. αkupdate is a
parameter used to update the Knowledge learnt during
the session.
Pkl(cat/wq) = Pkl(cat/wq) + αkupdate ∗ Pkl,new(cat/wq)
Pkl(wp/wq) = Pkl(wp/wq) + αkupdate ∗ Pkl,new(wp/wq)

2.4 Query Reformulation model With updated
representation of IN and knowledge states in place, we
now describe how to model query reformulation. We
assume the following strategy for the user to reformulate
the query. The user thinks about removing query words
and adding new query words (only adding words in case
of formulating first query). This is done by scoring a
query as a function of individual word scores. The user
tries to maximize the query score. In order to remove
or add a word, the user removes or adds a word that
increases the query score to the maximum compared to
the current query. Finally based on constraints on the
on query score maximization, we choose the removed
and added words and resultant query is formed.

Sample space of words: Though the Information
need of the user can include many attribute values and
words of those values, the user may not know all the
words and may not use all the known words for making
the query. Therefore, a sample space of words Sqw
is defined with all the words of the target product T ,
and the top-k common query words used in the sessions
where the final target product belong to same category
as T . Note that we do not imply here that the user
is aware of all words in Sqw. The set Sqw can be
interpreted in two ways, first the user is aware of all
words in Sqw but chooses the words based on the score
obtained through different Knowledge sources he might
use. Second, the user is not aware of all the words in Sqw
but gets reminded of these words based on the different
Knowledge sources. Either interpretation might be true
here and conclusion about this is out of the scope of this
work.

In the following, we describe the word scoring
method. The score of a word depends on differ-
ent knowledge sources the user might have like Back-
ground knowledge, linguistic Knowledge, Knowledge
learnt, Keyword matching knowledge and the Informa-
tion need (IN). Each knowledge source is given a weight
indicating the importance of that source for scoring
words and thereby in query reformulation. The score
for a potential query word can be understood as a func-
tion of the following, the score based on Information

need(IN), score from different Knowledge sources {Ki}
and weight of the knowledge sources {αKi}. Therefore
the general formulation for the score a word is defined
as,
w scoreA(w) =

∑
Ki
αKi∗

(
∑
vA,ai

K score(Ki, w, vA,ai) ∗ IN score(vAa, IN))

where Ki is a knowledge source, vA,ai is a either a
attribute value or word in the attribute value for at-
tribute A and IN is the current IN of user’s state,
αKi

is the weight of the knowledge source Ki. Note
that the word score w score is computed for each at-
tribute A (category, brand and title word attributes).
The IN score(vA,ai , IN) is given by the probability dis-
tribution P (VA,ai |IN) where ai is an attribute value of
A. Background Knowledge source(K1): In this
case, the K score(K1, w, vA,ai) is given by Pkb(cat|wq),
Pkb(wp|wq) for category attribute values and brand/title
attribute value words respectively. Therefore, the word
score based on K1 is,
w scoreC(w) = αK1 ∗

∑
cat Pkb(cat|w) ∗ P (VC,cat|IN)

w scoreA(w) = αK1 ∗
∑
wa
Pkb(wa|w) ∗ P (VA,ai |IN)

where attribute A can be B or Ti and and wa belongs
to the words describing of ai
Knowledge learnt source(K2): Similar to K1, the
conditional probabilities Pkl(cat|wq), Pkl(wp|wq) are
used for K score for category and brand/title attributes
respectively.
w scoreC(w) = αK1

∗
∑
cat Pkl(cat|w) ∗ P (VC,cat|IN)

w scoreA(w) = αK1
∗
∑
wA

Pkl(wa|w) ∗ P (VA,ai |IN)
where attribute A can be B or Ti.
Keyword matching knowledge(K3): The K score
is 1 if the word belongs to the words describing the at-
tribute vA,ai , the category attribute is also described in
words for computing this score.
K score(K3, w, vA,ai) = 1 if w ∈ words in vA,ai

= 0 otherwise
w scoreA(w) = αK3

∗K score(K3, w, vA,ai)∗
P (VA,ai |IN)

where attribute A can be C,B or Ti
Linguistic knowledge score(K4): As described in
Section 2.2, the user may also have Linguistic Knowl-
edge of word meaning. The K score(K4, w, vA,ai) is
computed based on Psim(w1|w2) computed by normal-
izing the similarities of w2. Here w1 can be attribute
value word from category, brand or title attribute value
description. This similarity is computed only for words
w2 that are outside of product space. Therefore the
word score is given by,
w scoreA(w) = αK4

∗
∑
wa
Psim(wa|w) ∗P (VA,ai |IN) if

w /∈ A where attribute A can be C,B or Ti
= 0 if w ∈ A where A can C,B or Ti

Query scoring:
Query score is the function of all the word scores ag-

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

gregated over all attributes. In the current model, we
choose the function as average operation for both word
scores and attributes. Therefore, query score is average
of attribute scores where attribute score is average of
word scores.
Q score(Q) =

∑
A

∑
wq∈Q w scoreA(wq)

To solve for the new query during query reformula-
tion, we solve for words which give maximum Q score
compared to Q score of current query. Each word is
scored independently in this way. Therefore final score
of word w is,
final score(w|IN, {Ki}) = Q score(Q)−

Q score(edit query)
where edit query is either Q− w or Q+ w referring to
removing or adding word respectively.
Therefore, a ranked list of words is produced separately
for removing words and adding words to the query (only
adding words in case of first query) and the top ranked
words are chosen according to a numerical threshold or
top-k threshold.

2.5 Click model The user decides to click on the
product when it is according to his/her preferences. In
this work, we only explore a preliminary probabilistic
model for click which is Document generation model.
For click decisions we only use user IN variable. Based
on the IN, a model for relevant and irrelevant prod-
uct items are made. The odds of the likelihood of the
product by relevant model to irrelevant model gives
the probability of clicking it. Note that the IN is bi-
nary distribution on all the attribute values of a at-
tribute, we combine the binary distributions across mul-
tiple attributes and normalize it to single multinomial
distribution. Therefore a language model is computed
for relevant and non relevant product items separately.

P (VA,ai |rel model) =
P (VA,ai

)∑
A

∑
ai
P (VA,ai

)
∀ai ∈ A∀A ∈

C,B, T i

P (VA,ai |nonrel model) =
(1−P (VA,ai

))∑
A

∑
ai

(1−P (VA,ai
))
∀ai ∈

A∀A ∈ C,B, T i
Using the click model, the click decision are made for all
results in a result page. For the next page of results, the
IN will be updated (using Update model) and then the
relevant and non-relevant models are updated accord-
ingly. Based on a threshold (0.05 is used), the products
with the total likelihood score greater than the thresh-
old are clicked in CSUM.

2.6 Interpretation of model parameters The
model specific parameters can be used to understand
the user behaviour in a session or group of sessions. We
present the interpretation of following set of parameters,
(1) λ1, λ2 indicate the user preference to update to

a Fixed IN state. The parameters also indicates how
likely the user changes his current IN. If λ1 is low then
the user likes to explore even after observing their target
product attribute values in the results. If λ2 is high
then the user likes to explore for more time during the
session.
(2) αK1

,αK2
, αK3

,αK4
are the weights of different

knowledge sources the user might use while reformulat-
ing the query. αK1

is the weight for knowledge source
based on Background knowledge of the product space.
If αK1 is high the the user uses popular/frequent words
that are used to retrieve the required attribute values.
A user exploring also tries to use frequent words in gen-
eral. A lower value indicates that user has lower Back-
ground knowledge or does not use this knowledge while
querying.
(3) αK2 is the weight for using Knowledge learnt of the
product space during the session. This parameter can
be analysed similar to αK1

, a lower value indicates that
the user does not effectively use the Knowledge learnt
from the product space or the user does not use this
knowledge. The Knowledge learnt is especially useful
for removing words in query reformulation.
(4) αK3

is the weight of Keyword matching knowledge.
If αK3

is less it is likely that that the user does not
the know the direct product space words for his IN
and therefore uses other similar or associated words
instead of the exact words. The value αK3 is directly
proportional to their knowledge of the product space
words.
(5) αK4

is the weight of Linguistic knowledge or Word
similarity based source. This source is used for words
that do not belong to the product space. If the user
cannot recollect a product space word, they might use
the similarity based knowledge source (along with other
sources) to come up with similar words. If αK4

is lower
implies either the user do not knowledge of similar words
or does not choose query words based on word similarity.

3 Learning User Models from Search Logs

The real search sessions can be used to compute esti-
mates of variables like IN and K for simulating a real
user or fitting a real search sessions and it can also be
used for evaluating the model. In the following, we de-
scribe how the search log is utilized for all the function-
alities. The search log we used in this work is obtained
from Walmart E-comm search log.

3.1 Initial State model Given the search task in-
formation which is target product T and initial query
Q0 and the search log, the estimation of the initial user
state variables is described in the following. Note that
in order to fit the CSUM to search sessions we need

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

to fix some variables because the Information need and
Knowledge are defined on large range of values. While
fitting the model as described in Section 3.2, we first
use the Initial state model to initialize these parameters
and then fit the parameters.
Information need initialization
The initial IN is build using the start task information:
the target product T , the starting query Q0 and the
background information learned from search logs. Gen-
erally, the query indicates only part of the IN of the user
and the user can have more product preferences that are
latent with respective to query. These preferences can
be known based on the final product the user purchases.

The attributes values of target product T are used
to make the topic IN θT which comprises of θTfixed

,
θTexplore

or θTf
, θTe for short. For attributes in T , θTf

is
fixed to 1 and θTe to c0 which is less than 1. The existing
user search logs are used to make a background IN θb.
The common query words used by the users indicate
the popular information need (product preferences) of
the users like popular brands or title words that are
preferred. Therefore, it is likely that the user will have
a higher preference for these attribute values in the
beginning. The probability of an attribute value among
queries of search log is used to make θbf and θbe where
θbf only has probabilities belonging to attribute values
of T and θbe has probabilities belonging to all attribute
values. The topic based IN and background based IN
are then combined as (1 − α1) ∗ θT + α1 ∗ θb for both
both fixed and explore IN to make P (VA,ai |θTbf) and
P (VA,ai |θTbe). As θT is more important, the value of
α1 is generally very small.

The first query Q0 provides important information
about the initial IN of the user because attributes values
corresponding to the query words of Q0 indicates initial
product preferences of the user. Using Q0, we adjust the
P (VA,ai), and estimate P (fA), P (eA) for all A. This is
equivalent to maximum likelihood solution of IN in or-
der to generate Q0. For attribute values that are in Q0,
the probabilities are raised to maximum value of all at-
tribute value preferences of that attribute and for other
the probabilities remain same, let this adjusted initial
IN be denoted P (VA,ai |Q0, T, bf), P (VA,ai |Q0, T, be).
Finally to estimate the P (fA), P (eA), we use the ai
in Q0. P (fA) is proportional to the likelihood of at-
tributes of Q0 from P (VA,ai |Q0, T, bf), and similarly
for P (eA) and then they are normalized such that
P (fA) + P (eA) = 1.

Therefore, the probability of preference for an at-
tribute value ai belonging to attribute A can be com-
puted as
(P (fA) ∗ P (VA,ai |Q0, T, bf))+

((1− P (fA)) ∗ P (VA,ai |Q0, T, be))

Knowledge of the product space
As described in Section 2.2, the Knowledge learnt is null
in the beginning because the user learns this knowledge
during the session while interacting with the system’s
results. The Background knowledge is initialized in the
following way.

Using the existing search logs, the translation
probabilities Pkb(cat|wq), Pkb(wp|wq) are estimated.
Pkb(cat|wq) is computed based on co-occurrence of wq
and cat in a user sessions which implies that wq is among
the query words used in session while cat is the category
attribute of the final product bought in the session and
the probability is computed by normalizing it across all
cat. Here, we assume that all the queries used in a ses-
sion are relevant to retrieve that category attribute that
the user finally purchasing. This assumption is reason-
able because in most of the cases, the category attribute
is fixed by the user from the beginning and the search
results are all from within one category or from very
similar categories. Similarly, Pkb(wp|wq) is computed
but with more constraints, we consider only the final
interaction in a session before purchase that has query
Qf and the final product Pf . The probability is directly
proportional to number of times wq ∈ Qf and wp ∈ Pf
among the search log sessions and computed by nor-
malized it across all wp. This Background knowledge
variable remains same all through the session.

3.2 Fitting using Search logs Using the real
search sessions, we can evaluate the model and fit the
model to obtain optimal model parameters that ex-
plains the real user. By fitting the model to real search
log sessions, we evaluate the performance of model
description and methods, representation in imitating
a real user in a search session and thus its ability to
simulate real users. By fitting the model, we also find
optimal model parameters that explain the real search
session. The proposed model has several parameters,
{α1, αiupdate, αkupdate, {αKi

}, λ1, λ2}. Note that these
parameters are same for all attributes. While simulat-
ing a user, the specific parameters can be initialized in
different ways to obtain variation in session interaction.
Some of the parameters ({α1, αiupdate, αkupdate})
are considered general (can be assumed to be same
for all users and all information needs) while others
({{αKi

}, λ1, λ2}) are specific indicating a specific
user behaviour. While fitting the model, the general
parameters are learned from all the session whereas the
specific parameters are learned separately for a single
session or a subset of the sessions with same user or
with same or similar information need (same target
product).
Estimating the best parameters The best parame-

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

ters are estimated using query reformulation action and
click action. The optimization function tries to max-
imize the likelihood of correct actions for both query
reformulation and clicks and the model parameters are
found accordingly. For a query reformulation, let the
true edits be the actual words removed or added to
the query, the final score(w|IN, {Ki}) of these words
should be maximized and the score for other words
in top-k words (top − k edits) should be minimized.
Therefore optimization for query reformulation is given
by,

Of1 = (1
N

∑
i(
∑
w∈true editsi

final score(w|IN,{Ki})
|true editsi|

−
∑
w∈top−k editsi\true editsi

final score(w|IN,{Ki})
|top−k editsi\true editsi|))

where N is the number of reformulations in a session,
true editsi, top − k editsi are true edits, top − k edits
of ith reformulation.

For click action, we consider different measures be-
cause it is difficult to predict the exact clicks correctly.
Therefore, we consider average pairwise similarity be-
tween actual clicks and clicks generated by the model.
We used jaccard similarity here. Along with similarity,
we also compare the number of clicks, the difference
between actual number of clicks (true clicks) and the
generated number of clicks (gen clicks) should be less.
All the clicks in a session are grouped together for
computing average similarity an difference in number of
clicks. The jaccard similarity jaccard sim is computed
using appended text of title, category, brand of the
product. The optimization function for clicks is,

Of2 = (1
|true clicks|∗|gen clicks|

∑
ti

∑
gi
jaccard sim(ti, gi)

+ 1
(1+|true clicks|−|gen clicks|))

The best specific parameters, {params} =
{αKi

}, λ1, λ2}, are given by
{best params} = argmaxparams

1
|S|

∑
s∈S(Of1s+Of2s)

where S is set of sessions.
It is difficult to imitate the complete real user ses-

sion from beginning to end, an error made in one step
will be carried on to the next and the overall perfor-
mance declines a lot. Therefore, some simplifications
are done in order to fit the model to a session. To es-
timate best parameters, every query reformulation is
treated as the first reformulation in the session. The
query after the previous reformulation is treated as the
first query and the information need is created accord-
ingly. The interactions in between are used to update
the IN and Knowledge. Then the query reformulation
process is carried out. In this way, the errors made
in the previous reformulation and IN update will not
carried along to the next reformulation. Similarly for
clicks, the actual clicks until the previous set of inter-

actions are considered known and the IN is updated
using actual clicks and then the clicks for the current
set of results are predicted/generated. Therefore, the
mistakes made in previous click decisions will not be
effect the next click decisions. The model parameters
should be same throughout the session and the score of
each query reformulation/click is aggregated to get the
performance on a session as given in Of1, Of2.

4 Experiments

We explain some implementation details first. For find-
ing values of some general parameters, a validation set
of search log sessions is used and the general parameters
are set as, c0 = 0.5, α1 = 0.3, αkupdate = 0.5, αiupdate =
0.1. For simplification, we consider that the user is fixed
about category attribute, so P (fC) = 1 for all experi-
ments. All the functions used across the model are com-
puted in following way, in Section 2.3.1 f(2) = (4 + 20 ∗

λ2, Po(fA) = λ1 ∗
∑

oi∈{oi}
P (VA,oi

|Q0,t,bfixed)∑
ai
P (VA,ai

|Q0,t,bfixed)
, in Sec-

tion 2.3.2 f1(rp, clkp) = (
1+4∗clkp
1+0.2∗rp), f2(wp, rp, clkp) =

(
c(wp,p)(1+4∗clkp)∑

w′
p∈p

c(w′
p,p)(1+4∗clkp)

). Finally, to estimate best spe-

cific parameters, we use a grid search approach varying
each parameter between {0.1, 0.3, 0.5, 0.7}.

We estimated the model parameters and evaluated
the model on search sessions by its precision and recall
in identifying Query reformulating words and similar-
ity of generated clicks. We also evaluated on new test
sessions by estimated parameters on train sessions with
same final target product. From the results we observed
that the model performs reasonable well and also gen-
eralizes to large set of session, we do not show those
results due to space constraints.

4.1 Analysis of User parameters In the follow-
ing, we verify if the model parameters correlate with
the corresponding user behaviour characteristic as de-
scribed in Section 2.6. We perform this analysis
for (λ1) which indicates exploration behaviour of the
user. We choose some observable actions of the users
which approximately indicate that the user is explor-
ing. While exploring, the user generally click various
other products different from the final product they
purchase. The user may click or view the final prod-
uct in the results but do not purchase it as they are
exploring and are not decided. Therefore, we com-
pute the following two estimates using all the clicks
of the user in a session. Exploring with clicks(Ec) =∑

(1−jaccardsim(clicked,final))

no.ofclickedproducts where jaccardsim is jac-

card similarity. Exploring with not deciding(EnD) is
no.of times final product is viewed before purchasing. In

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

Figure 2: Histogram of Ec, EnD for high and low λ1

this work we experimented with only discrete values for
λ1 which are {0.1, 0.3, 0.5, 0.7}. Therefore we analyzed
the parameter by dividing it to two groups low,high:
low: 0.1, 0.3, high: 0.5, 0.7. As λ1 is inversely propor-
tional to amount of exploration, if λ1 is low we expect
the user is exploring and therefore the Ec, End should
be higher. If λ2 is high we expect the user is not explor-
ing, so Ec, End should be less. Figure 2a, 2b shows the
histograms of Ec, EnD for λ1 being low (red) and high
(blue). For smaller values of Ec, EnD, λ1 high (blue)
dominates, that means it is more frequent that when
λ1 is high when Ec, EnD are low. For higher values
of Ec, EnD, λ2 low (red) dominates which implies that
it is more frequent that λ2 will be low when Ec, EnD
are high. Therefore, the histograms agrees with our hy-
pothesis about λ1, Ec, End and shows that indeed λ1
indicates the exploration user behaviour.

4.2 Analysis of user behavior using the model
In this section, we show how the proposed model can be
used to analyze user behavior in ways that we cannot
do with existing models. For example, we can leverage
the capability of the model to model the cognitive state
of a user and use the estimated parameters of the
model based on search log to reveal and understand a
user’s behavior. Below we will show some preliminary
results of behavior analysis. We use the six interpretable
parameters from Section 2.6 of the model to obtain
meaningful representation of user behaviour in search
session: a data point in 6 dimensional space and perform
further analysis to understand variation patterns of user
behavior.

4.2.1 Variations of user behavior Understanding
variations of user behavior is necessary for adapting
search service effectively to a specific user in a specific
search context. In general, different users searching
for the same product would show variations of their
behavior, and a user can have different behaviors while
searching for different type of products in different
categories. Does the behavior vary more across users
or across products?

To address this question, we first can compute the

variance in user behaviour for same user across different
products, varu = 1

|Su| ∗
∑
s∈Su

(dist(s, µu)2), where

Su is the set of the sessions of user u, µu are the
mean point of the sessions Su, s is the data point of
a session. Next, we compute the variance in behaviour
of users buying the same product in the end, varp =
1
|Sp| ∗

∑
s∈Sp

(dist(s, µp)
2) where Sp is the set of sessions

where product p is product purchased in the end. µp is
the mean point of sessions Sp. We also examine variance
along each of the six parameters. Table 1 shows varu
of some users and average varu of all users. It also
shows varp for some products and average varp for all
products. The table shows the variances along each
individual parameters for some users/products and for
all users/products. As we consider only the sessions
with at least one reformulation, number of sessions for
a user is very less with highest being only 12 and the
highest number of sessions for a product is only 25. The
first rows with ”Mean” indicate the average variances
for the users/products.

From Table 1, it can be inferred that the variance
of parameters of sessions of user and product are
in the same range. The user variance is slightly
more, for example the variance for a product with 7
different users is around 0.35,0.41 while for the same
user but 7 different sessions it is 0.44,0.43. Further,
the average variance for all users is 0.311 whereas the
average variance for all products is 0.239. Therefore,
we conclude that on an average the variance in user
behaviour purchasing same product is less than the
variance in behaviour of same user buying different
products.

By observing individual parameter variances in Ta-
ble 1, we infer that the variance in λ1, λ2 is larger than
other parameters {αKi

}, this implies that most impor-
tant/frequent difference in behaviours is the exploring
or fixed IN behaviour of users. This is also further shown
in Section 4.2.2 through common cluster patterns.
Table 1: Variance of same user sessions and same
product sessions. The table shows average of variance
using all parameters varu, varp average variance along
each each parameter.

UserId |Su| varu λ1 λ2 αK1
) αK2

αK3
αK4

Mean - 0.311 0.059 0.064 0.042 0.052 0.047 0.046
1 12 0.426 0.076 0.076 0.059 0.067 0.088 0.06
2 7 0.446 0.088 0.073 0.065 0.069 0.062 0.088
3 7 0.439 0.088 0.088 0.051 0.068 0.088 0.055

ProductId |Sp| varp λ1 λ2 αK1
αK2

αK3
αK4

Mean - 0.239 0.045 0.035 0.046 0.039 0.037 0.039
1 25 0.443 0.089 0.053 0.089 0.053 0.079 0.078
2 19 0.353 0.089 0.089 0.059 0.041 0.018 0.054
3 18 0.410 0.049 0.061 0.085 0.061 0.075 0.078

4.2.2 Common patterns through clustering All
the sessions are represented using the 6 model specific

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

parameters and are clustered. We used K-means clus-
tering. Each cluster center is interpreted as a behaviour
pattern representing that cluster. Clustering is done
with different number of clusters like 2, 3, 32 and the
cluster centers are shown in Table 2. For 32 clusters,
only the largest 4 cluster centers are shown in the Table
2. From Table 2, it can be inferred that the differ-
ence between cluster centers at just 2 clusters is that
one has λ1 high and λ2 low and the other has λ1 low
and λ2 high, the other parameters have same value for
both clusters. It implies that the most distinguishable
behaviour patterns among E-comm search users are the
exploration and fixed Information need (IN) behaviours.
With 3 clusters, the next major difference in behaviour
patterns is at αK3

, αK4
, the two most different type of

knowledge sources used for making queries: the extent
to which a user is using only product space wordsK3 or
similar words from outside the product spaceK4. The
cluster center implies that the user uses only either one
of the sources more so the values of αK3

, αK4
are in-

versely correlated. Therefore, the first division of users
occurs with type of IN and the second important divi-
sion is with the types of knowledge sources used.

Table 2: Cluster centers

ClusterId Cluster
size

λ1 λ2 αK1
αK2

αK3
αK4

0 799 0.659 0.133 0.392 0.38 0.404 0.340
1 779 0.139 0.635 0.413 0.407 0.269 0.400
0 513 0.607 0.159 0.385 0.433 0.151 0.475
1 687 0.111 0.686 0.425 0.408 0.286 0.385
2 378 0.628 0.156 0.386 0.315 0.679 0.202
0 86 0.105 0.669 0.651 0.672 0.128 0.130
8 85 0.102 0.693 0.643 0.159 0.148 0.662
5 76 0.695 0.103 0.179 0.142 0.695 0.147
3 75 0.105 0.695 0.161 0.159 0.129 0.657

5 Conclusions and Future Work

We proposed a novel cognitive user model CSUM for
E-Comm search, which is an interpretable generative
model that simulates how a user might behave in search
session when searching for a particular product. It goes
beyond the existing work by explicitly modeling and
updating the cognitive state of a user, including the
user’s information need, background knowledge, and
new knowledge learned in a search session. Given a
particular product to be searched for, the generative
model models how a user would formulate, re-formulate
a query as needed, click on results, with interpretable
parameters that can be estimated using a search log.

The model has many applications. One applica-
tion that we have explored in depth is to use it as a
tool to mine search log data to analyze and understand
user behaviors buried in the search log. Because of its
in-depth modeling of cognitive states of users, CSUM
enables us to reveal interesting user behavior patterns

that cannot be extracted using existing models. Our
preliminary evaluation shows several interesting findings
about user behavior. For example, we show that there
is greater variation of a user’s behavior across different
products than the variation of the behavior of different
users searching for the same product, suggesting that
it is likely more effective to learn from past users who
searched for the same/similar product to help a current
user than to learn from a user’s past search history (on
different products) to improve the user’s current search
session. We also reveal that a major factor causing vari-
ations of user behavior is to what extent the user wants
to explore in the search process, which reflects a user’s
clarity about the information need, suggesting that it is
important to provide customized search support based
on the inferred exploration parameter of the model.
While these findings are already useful, the model can
be used to support many other kinds of analysis (e.g.,
analysis of various knowledge representation component
models and how they evolve in a session), which would
be interesting future work. Another major application
of the model is to enable construction many user sim-
ulators based on search log data, which are needed for
quantitative evaluation of interactive search engines as
well as training reinforcement learning algorithms for
optimizing E-Comm search. It would be highly inter-
esting to explore such future applications of CSUM.
References

[1] F. Baskaya, “Simulating Search Sessions in Interactive
Information RetrievalEvaluation”, PhD thesis, Univer-
sity of Tempere; 2014.

[2] Ben Carterette, Ashraf Bah, and Mustafa Zengin,
“Dynamic test collectionsfor retrieval evaluation” In
ICTIR; 2015, pp. 91–100.

[3] David Maxwell and Leif Azzopardi, “Agents, simulated
users and humans:An analysis of performance and
behaviour”, In CIKM; 2016, pp. 731–740.

[4] Sondhi, Parikshit and Sharma, Mohit and Kolari,
Pranam and Zhai, ChengXiang, “A Taxonomy of
Queries for E-commerce Search” In ACM SIGIR; 2018,
pp. 1245–1248.

[5] Guo, Qi and Agichtein, Eugene. “Ready to buy or
just browsing? Detecting web searcher goals from
interaction data.”, In ACM SIGIR; 2010, pp. 130–137.

[6] Hassan, Ahmed and White, Ryen W and Dumais,
Susan T and Wang, Yi-Min, “Struggling or exploring?
Disambiguating long search sessions”, In WSDM; 2014,
pp. 53–62.

[7] Hassan Awadallah, Ahmed and White, Ryen W and
Pantel, Patrick and Dumais, Susan T and Wang, Yi-
Min, “Supporting complex search tasks”, In CIKM;
2014, pp. 829–838

[8] Wang, Kuansan and Gloy, Nikolas and Li, Xiaolong,
“Inferring search behaviors using partially observable
Markov (POM) model”, In WSDM; 2010, pp. 211–220.

Copyright c© 20XX by SIAM
Unauthorized reproduction of this article is prohibited

